Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1849): 20200494, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35249388

ABSTRACT

Some of the earliest evidence for the presence of modern humans in rainforests has come from the fossil deposits of Lida Ajer in Sumatra. Two human teeth from this cave were estimated to be 73-63 thousand years old, which is significantly older than some estimates of modern human migration out of Africa based on genetic data. The deposits were interpreted as being associated with a rainforest environment based largely on the presence of abundant orangutan fossils. As well as the main fossil-bearing chamber, fossil-bearing passages are present below a sinkhole, although the relationship between the different fossil deposits has only been tenuously established. Here, we provide significant new sedimentological, geochronological and palaeoecological data aimed at reconstructing the speleological and environmental history of the cave and the clastic and fossil deposits therein. Our data suggest that the Lida Ajer fossils were deposited during Marine Isotope Stage 4, with fossils from the lower passages older than the main fossil chamber. Our use of stable carbon and oxygen isotope analyses of mammalian tooth enamel demonstrates that early humans probably occupied a closed-canopy forest very similar to those present in the region today, although the fossil orangutans may have occupied a slightly different niche. This article is part of the theme issue 'Tropical forests in the deep human past'.


Subject(s)
Hominidae , Tooth , Animals , Caves , Fossils , Humans , Indonesia , Mammals , Pongo
2.
Sci Rep ; 11(1): 7935, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846391

ABSTRACT

Lakes are sensitive to climate change and their sediments play a pivotal role as environmental recorders. The oxygen and carbon isotope composition (δ18O and δ13C) of carbonates from alkaline lakes is featured in numerous studies attempting a quantitative reconstruction of rainfall, temperature and precipitation-evaporation changes. An often-overlooked challenge consists in the mineralogically mixed nature of carbonates themselves. We document a large variability of carbonate components and their respective distinct δ18O and δ13C values from sediments of Lake Van (Turkey) covering the last 150 kyr. The carbonate inventory consists of primary (1) inorganic calcite and aragonite precipitating in the surface-water, (2) biogenic calcite ostracod valves; and post-depositional phases: (3) dolomite forming in the sediment, and previously overlooked, (4) aragonite encrustations formed rapidly around decaying organic matter. We find a systematic relation between the lithology and the dominant deep-water carbonate phase formed recurrently under specific hydrological conditions. The presence of the different carbonates is never mutually exclusive, and the isotopic composition of each phase forms a distinctive cluster characteristic for the depth and timing of their formation. Our findings stretch the envelope of mechanisms forming lacustrine carbonates and highlight the urge to identify and separate carbonate components prior to geochemical analyses.

3.
Proc Natl Acad Sci U S A ; 116(35): 17201-17206, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31405969

ABSTRACT

Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niño-like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability.

4.
WIREs Water ; 6(2): e1330, 2019.
Article in English | MEDLINE | ID: mdl-33362922

ABSTRACT

The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the human-climate-environment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of "scale" and "seasonality" as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales. This article is categorized under:Human Water > Water as Imagined and RepresentedScience of Water > Water and Environmental ChangeWater and Life > Nature of Freshwater Ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...