Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 6(10): e2200787, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36126166

ABSTRACT

The inorganic hole transport layer of nickel oxide (NiOx ) has shown highly efficient, low-cost, and scalable in perovskite photovoltaics. However, redox reactions at the interface between NiOx and perovskites limit their commercialization. In this study, ABABr (4-(2-Aminoethyl) benzoic acid bromide) between the NiOx and different perovskite layers to address the issues has been introduced. How the ABABr interacts with NiOx and perovskites is experimentally and theoretically investigated. These results show that the ABABr molecule chemically reacts with the NiOx via electrostatic attraction on one side, whereas on the other side, it forms a strong hydrogen bond via the NH3 + group with perovskites layers, thus directly diminishing the redox reaction between the NiOx and perovskites layers and passivating the layer surfaces. Additionally, the ABABr interface modification leads to significant improvements in perovskite film morphology, crystallization, and band alignment. The perovskites solar cells (PSCs) based on an ABABr interface modification show power conversion efficiency (PCE) improvement by over 13% and maintain over 90% of its PCE after continuous operation at maximum power point for over 500 h. The work not only contributes to the development of novel interlayers for stable PSCs but also to the understanding of how to prevent interface redox reactions.

2.
J Phys Condens Matter ; 33(46)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34412043

ABSTRACT

Al doped ZnO (AZO) is a promising transparent conducting oxide to replace the expensive Sn doped In2O3(ITO). Understanding the formation and evolution of defects in AZO is essential for its further improvement. Here, we synthesize transparent conducting AZO thin films by reactive DC magnetron sputtering. The effects of oxygen flow ratio as well as the rapid thermal annealing (RTA) in different conditions on their structural and optoelectrical properties were investigated by a variety of analytical techniques. We find that AZO thin films grown in O-rich conditions exhibit inferior optoelectrical performance as compared with those grown in Zn-rich conditions, possibly due to the formation of excessive native acceptor defects and/or secondary phases (e.g. Al2O3). Temperature-dependent Hall measurements indicate that mobilities of these highly degenerate AZO films withN> 1020 cm-3are primarily limited by ionized and neutral impurities, while films with relatively lowN∼ 1019 cm-3exhibit a temperature-activated mobility owing to the grain-barrier scattering. AsNincreases, the optical band gap of AZO thin film increases as a result of Burstein-Moss shift and band gap narrowing. RTA treatments under appropriate conditions (i.e. at 500 °C for 60 s in Ar) can further improve the electrical properties of AZO thin film, with low resistivity of ∼6.2 × 10-4Ω cm achieved, while RTA at high temperature with longer time can lead to the formation of substantial sub-gap defect states and thus lowers the electron mobility. X-ray photoelectron spectroscopy provides further evidence on the variation of Al (Zn) content at the surface of AZO thin films with different processing conditions.

3.
ACS Appl Mater Interfaces ; 13(36): 43795-43805, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34464077

ABSTRACT

Due to their low-temperature deposition, high mobility (>10 cm2/V·s), and electrical conductivity, amorphous ionic oxide semiconductors (AIOSs) have received much attention for their applications in flexible and/or organic electro-optical devices. Here, we report on a study of the flexibility of CdO-In2O3 alloy thin films, deposited on a polyethylene terephthalate (PET) substrate by radio frequency magnetron sputtering at room temperature. Cd1-xInxO1+δ alloys with the composition of x > 0.6 are amorphous, exhibiting a high electron mobility of 40-50 cm2/V·s, a low resistivity of ∼3 × 10-4 Ω·cm, and high transmittance over a wide spectral window of 350 to >1600 nm. The flexibility of both crystalline and amorphous Cd1-xInxO1+δ films on the PET substrate was investigated by measuring their electrical resistivity after both compressive and tensile bending with a range of bending radii and repeated bending cycles. Under both compressive and tensile bending with Rb = 16.5 mm, no significant degradation was observed for both the crystalline and amorphous films up to 300 bending cycles. For a smaller bending radius, the amorphous film shows much less electrical degradation than the crystalline films under compressive bending due to less film delamination at the bending sites. On the other hand, for a small bending radius (<16 mm), both crystalline and amorphous films degrade after repeated tensile bending, most likely due to the development of microcracks in the films. To demonstrate the application of amorphous Cd1-xInxO1+δ alloy in photovoltaics, we fabricated perovskite and bulk-heterojunction organic solar cells (OSCs) on glass and flexible PET utilizing amorphous Cd1-xInxO1+δ layers as transparent electrodes. The organic-inorganic hybrid perovskite solar cells (PSCs) exhibit a power conversion efficiency (PCE) of ∼11 to 12% under both front and back illumination, demonstrating good bifacial performance with bifaciality factor >90%. The OSCs fabricated on an amorphous Cd1-xInxO1+δ-coated flexible PET substrate achieve a promising PCE of 12.06%. Our results strongly suggest the technological potentials of amorphous Cd1-xInxO1+δ as a reliable and effective transparent conducting material for flexible and organic optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...