Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Reg Health West Pac ; 32: 100660, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36591327

ABSTRACT

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the model city of universal masking of the world, has resulted in a major public health crisis. Although the third vaccination resulted in strong boosting of neutralization antibody, vaccine efficacy and correlate of immune protection against the major circulating Omicron BA.2 remain to be investigated. Methods: We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 470 public servants who had received different SARS-CoV-2 vaccine regimens including two-dose BNT162b2 (2 × BNT, n = 169), three-dose BNT162b2 (3 × BNT, n = 168), two-dose CoronaVac (2 × CorV, n = 34), three-dose CoronaVac (3 × CorV, n = 67) and third-dose BNT162b2 following 2 × CorV (2 × CorV+1BNT, n = 32). Humoral and cellular immune responses after three-dose vaccination were further characterized and correlated with clinical characteristics of BA.2 infection. Findings: During the BA.2 outbreak, 27.7% vaccinees were infected. The timely third-dose vaccination provided significant protection with lower incidence rates of breakthrough infections (2 × BNT 46.2% vs 3 × BNT 13.1%, p < 0.0001; 2 × CorV 44.1% vs 3 × CorV 19.4%, p = 0.003). Investigation of immune responses on blood samples derived from 90 subjects in three-dose vaccination cohorts collected before the BA.2 outbreak revealed that the third-dose vaccination activated spike (S)-specific memory B cells and Omicron cross-reactive T cell responses, which correlated with reduced frequencies of breakthrough infections and disease severity rather than with types of vaccines. Moreover, the frequency of S-specific activated memory B cells was significantly lower in infected vaccinees than uninfected vaccinees before vaccine-breakthrough infection whereas IFN-γ+ CD4 T cells were negatively associated with age and viral clearance time. Critically, BA.2 breakthrough infection boosted cross-reactive memory B cells with enhanced cross-neutralizing antibodies to Omicron sublineages, including BA.2.12.1 and BA.4/5, in all vaccinees tested. Interpretation: Our results imply that the timely third vaccination and immune responses are likely required for vaccine-mediated protection against Omicron BA.2 pandemic. Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested before the emergence of BA.2.12.1 and BA.4/5, the third dose vaccination-activated S-specific memory B cells and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Neutralizing antibody potency enhanced by BA.2 breakthrough infection in vaccinees with prior 3 doses of CoronaVac or BNT162b2 may reduce the risk of infection against ongoing BA.2.12.1 and BA.4/5. Funding: Hong Kong Research Grants Council Collaborative Research Fund, Health and Medical Research Fund, Wellcome Trust, Shenzhen Science and Technology Program, the Health@InnoHK, Innovation and Technology Commission of Hong Kong, China, National Program on Key Research Project, Emergency Key Program of Guangzhou Laboratory, donations from the Friends of Hope Education Fund and the Hong Kong Theme-Based Research Scheme.

2.
J Virol ; 96(7): e0216121, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35297660

ABSTRACT

Vaccine-induced protective T cell immunity is necessary for HIV-1 functional cure. We previously reported that rhesus PD1-Gag-based DNA vaccination sustained simian-human immunodeficiency virus (SHIV) suppression by inducing effector-memory CD8+ T cells. Here, we investigated a human PD1-Gag-based DNA vaccine, namely, ICVAX, for clinical translation. PD1-based dendritic cell targeting and mosaic antigenic designs were combined to generate the ICVAX by fusing the human soluble PD1 domain with a bivalent HIV-1 Gag-p41 mosaic antigen. The mosaic antigen was cross-reactive with patients infected with B, CRF07/08_BC, and CRF01_AE variants. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses than mosaic Gag-p41 alone, and suppressed EcoHIV infection more efficiently. In macaques, ICVAX elicited polyfunctional effector-memory T cell responses that targeted multiple nonoverlapping epitopes of the Gag-p41 antigen. Furthermore, ICVAX manufactured following good manufacturing practices proved potent immunogenicity in macaques after biannual homologous vaccination, warranting clinical evaluation of ICVAX as an immunotherapy against HIV-1. IMPORTANCE This study presents that ICVAX, a PD1-based DNA vaccine against HIV-1, could induce broad and polyfunctional T cell responses against different HIV-1 subtypes. ICVAX encodes a recombinant antigen consisting of the human soluble PD1 domain fused with two mosaic Gag-p41 antigens. The mosaic antigens cover more than 500 HIV-1 strains circulating in China including the subtypes B/B', CRF01_AE, and CRF07/08_BC. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses, with better EcoHIV suppression than the nontargeting mosaic Gag-p41 DNA vaccine. Moreover, both lab-generated and GMP-grade ICVAX also elicited strong polyfunctional effector-memory T cell responses in rhesus macaques with good immunogenicity against multiple nonoverlapping epitopes of the Gag-p41 antigen. This study therefore highlights the great potential to translate the PD1-based DNA vaccine approach into clinical use, and opens up new avenues for alternative HIV-1 vaccine design for HIV-1 preventive and functional cure.


Subject(s)
HIV Infections , HIV-1 , Vaccines, Combined , Vaccines, DNA , Viral Vaccines , AIDS Vaccines/immunology , Animals , Antigens, Viral , CD48 Antigen , CD8-Positive T-Lymphocytes , Epitopes/immunology , Gene Products, gag/genetics , Gene Products, gag/immunology , HIV Infections/prevention & control , HIV-1/genetics , Humans , Macaca mulatta , Memory T Cells , Mice , Vaccines, Combined/genetics , Vaccines, Combined/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
3.
EBioMedicine ; 60: 103008, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32979832

ABSTRACT

BACKGROUND: Memory CD8+T cell responses play an essential role in protection against persistent infection. However, HIV-1 evades vaccine-induced memory CD8+T cell response by mechanisms that are not fully understood. METHODS: We analyzed the temporal dynamics of CD8+T cell recall activity and function during EcoHIV infection in a potent PD1-based vaccine immunized immunocompetent mice. FINDINGS: Upon intraperitoneal EcoHIV infection, high levels of HIV-1 GAG-specific CD8+T lymphocytes recall response reduced EcoHIV-infected cells significantly. However, this protective effect diminished quickly after seven days, followed by a rapid reduction of GAG-specific CD8+T cell number and activity, and viral persistence. Mechanistically, EcoHIV activated dendritic cells (DCs) and myeloid cells. Myeloid cells were infected and rapidly expanded, exhibiting elevated PD-L1/-L2 expression and T cell suppressive function before day 7, and were resistant to CD8+T cell-mediated apoptosis. Depletion of myeloid-derived suppressor cells (MDSCs) reduced EcoHIV infection and boosted T cell responses. INTERPRETATION: This study provides an overview of the temporal interplay of persistent virus, DCs, MDSCs and antigen-specific CD8+T cells during acute infection. We identify MDSCs as critical gatekeepers that restrain antiviral T cell memory responses, and highlight MDSCs as an important target for developing effective vaccines against chronic human infections. FUNDING: Hong Kong Research Grant Council (T11-709/18-N, HKU5/CRF/13G), General Research Fund (17122915 and 17114114), Hong Kong Health and Medical Research Fund (11100752, 14130582, 16150662), Grant RGC-ANR A-HKU709/14, the San-Ming Project of Medicine (SZSM201512029), University Development Fund of the University of Hong Kong and Li Ka Shing Faculty of Medicine Matching Fund to HKU AIDS Institute.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions/immunology , Immunologic Memory , Lentivirus Infections/immunology , Lentivirus Infections/virology , Lentivirus/immunology , Myeloid-Derived Suppressor Cells/immunology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Female , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Humans , Immunocompetence , Immunomodulation , Lentivirus/genetics , Lentivirus Infections/metabolism , Lymphocyte Activation/immunology , Lymphocyte Depletion , Mice , Mice, Transgenic , Myeloid-Derived Suppressor Cells/metabolism , Viral Load , Viral Vaccines/immunology
4.
JCI Insight ; 4(4)2019 02 21.
Article in English | MEDLINE | ID: mdl-30830861

ABSTRACT

Newly emerging viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle Eastern respiratory syndrome CoVs (MERS-CoV), and H7N9, cause fatal acute lung injury (ALI) by driving hypercytokinemia and aggressive inflammation through mechanisms that remain elusive. In SARS-CoV/macaque models, we determined that anti-spike IgG (S-IgG), in productively infected lungs, causes severe ALI by skewing inflammation-resolving response. Alveolar macrophages underwent functional polarization in acutely infected macaques, demonstrating simultaneously both proinflammatory and wound-healing characteristics. The presence of S-IgG prior to viral clearance, however, abrogated wound-healing responses and promoted MCP1 and IL-8 production and proinflammatory monocyte/macrophage recruitment and accumulation. Critically, patients who eventually died of SARS (hereafter referred to as deceased patients) displayed similarly accumulated pulmonary proinflammatory, absence of wound-healing macrophages, and faster neutralizing antibody responses. Their sera enhanced SARS-CoV-induced MCP1 and IL-8 production by human monocyte-derived wound-healing macrophages, whereas blockade of FcγR reduced such effects. Our findings reveal a mechanism responsible for virus-mediated ALI, define a pathological consequence of viral specific antibody response, and provide a potential target for treatment of SARS-CoV or other virus-mediated lung injury.


Subject(s)
Acute Lung Injury/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Acute Lung Injury/blood , Acute Lung Injury/virology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Cell Line , Disease Models, Animal , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Male , Middle Aged , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe Acute Respiratory Syndrome/blood , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Vaccinia virus/genetics , Vaccinia virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Young Adult
5.
Nat Microbiol ; 2(10): 1389-1402, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808299

ABSTRACT

The innate immune cells underlying mucosal inflammatory responses and damage during acute HIV-1 infection remain incompletely understood. Here, we report a Vδ2 subset of gut-homing γδ T cells with significantly upregulated Δ42PD1 (a PD1 isoform) in acute (~20%) HIV-1 patients compared to chronic HIV-1 patients (~11%) and healthy controls (~2%). The frequency of Δ42PD1+Vδ2 cells correlates positively with plasma levels of pro-inflammatory cytokines and fatty-acid-binding protein before detectable lipopolysaccharide in acute patients. The expression of Δ42PD1 can be induced by in vitro HIV-1 infection and is accompanied by high co-expression of gut-homing receptors CCR9/CD103. To investigate the role of Δ42PD1+Vδ2 cells in vivo, they were adoptively transferred into autologous humanized mice, resulting in small intestinal inflammatory damage, probably due to the interaction of Δ42PD1 with its cognate receptor Toll-like receptor 4 (TLR4). In addition, blockade of Δ42PD1 or TLR4 successfully reduced the cytokine effect induced by Δ42PD1+Vδ2 cells in vitro, as well as the mucosal pathological effect in humanized mice. Our findings have therefore uncovered a Δ42PD1-TLR4 pathway exhibited by virus-induced gut-homing Vδ2 cells that may contribute to innate immune activation and intestinal pathogenesis during acute HIV-1 infection. Δ42PD1+Vδ2 cells may serve as a target for the investigation of diseases with mucosal inflammation.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Immunity, Mucosal , Intestines/immunology , Mucous Membrane/immunology , T-Lymphocyte Subsets/immunology , Toll-Like Receptor 4/metabolism , Animals , Beijing , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Cell Line , Cell Movement/immunology , Cytokines/metabolism , Disease Models, Animal , HIV Infections/pathology , HIV-1/pathogenicity , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Intestine, Small/immunology , Intestine, Small/pathology , Lipopolysaccharides , Mice , Receptors, CCR/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/virology , Toll-Like Receptor 4/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...