Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 23(6): 4522-4537, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37304395

ABSTRACT

The pharmaceutical compound entacapone ((E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide) is important in the treatment of Parkinson's disease, exhibiting interesting polymorphic behavior upon crystallization from solution. It consistently produces its stable form A with a uniform crystal size distribution on the surface of an Au(111) template while concomitantly forming its metastable form D within the same bulk solution. Molecular modeling using empirical atomistic force-fields reveals more complex molecular and intermolecular structures for form D compared to form A, with the crystal chemistry of both polymorphs being dominated by van der Waals and π-π stacking interactions with lower contributions (ca. 20%) from hydrogen bonding and electrostatic interactions. Comparative lattice energies and convergence for the polymorphs are consistent with the observed concomitant polymorphic behavior. Synthon characterization reveals an elongated needle-like morphology for form D crystals in contrast to the more equant form A crystals with the surface chemistry of the latter exposing the molecules' cyano groups on its {010} and {011} habit faces. Density functional theory modeling of surface adsorption reveals preferential interactions between Au and the synthon GA interactions of form A on the Au surface. Molecular dynamics modeling of the entacapone/gold interface reveals the entacapone molecular structure within the first adsorbed layer to show nearly identical interaction distances, for both the molecules within form A or D with respect to the Au surface, while in the second and third layers when entacapone molecule-molecule interactions overtake the interactions between those of molecule-Au, the intermolecular structures are found to be closer to the form A structure than form D. In these layers, synthon GA (form A) could be reproduced with just two small azimuthal rotations (5° and 15°) whereas the closest alignment to a form D synthon requires larger azimuthal rotations (15° and 40°). The cyano functional group interactions with the Au template dominate interfacial interactions with these groups being aligned parallel to the Au surface and with nearest neighbor distances to Au atoms more closely matching those in form A than form D. The overall polymorph direction pathway thus encompasses consideration of molecular, crystal, and surface chemistry factors.

2.
Mol Pharm ; 18(9): 3247-3259, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34399050

ABSTRACT

We have employed a bespoke setup combining confocal Raman microscopy and an ultraviolet-visible (UV-Vis) spectroscopy flow cell to investigate the effect of excipients on the disproportionation kinetics of Pioglitazone HCl (PioHCl) in tablets during dissolution. Three binary formulations of PioHCl, containing citric acid monohydrate (CA), lactose monohydrate (LM), or magnesium stearate (MgSt), respectively, were used as models to study the influence of excipients' physicochemical properties on the rate of salt disproportionation kinetics and dissolution performance in different aqueous pH environments. It was found that formulation excipients can induce or prevent salt disproportionation by modulating the microenvironmental pH regardless of the pH of the dissolution media. Incorporating CA in PioHCl tablets preserves the salt form and enhances the dissolution performance of the salt in the acidic medium (pH = 1.2). In contrast, LM and MgSt had a detrimental effect on in vitro drug performance by inducing salt disproportionation in the tablet during dissolution in the same acidic medium. Dissolution in the neutral medium (pH = 6.8) showed rapid formation of the free base upon contact with the dissolution medium. The Raman maps of the cross-sectioned tablets revealed the formation of a shell consisting of the free base around the edge of the tablet. This shell decreased the rate of penetration of the dissolution medium into the tablet, which had significant implications on the release of the API into the surrounding solution, as shown by the UV-vis absorption spectroscopy drug release data. Our findings highlight the utility of the Raman/UV-vis flow cell analytical platform as an advanced analytical technique to investigate the effect of excipients and dissolution media on salt disproportionation in real time. This methodology will be used to enhance our understanding of salt stability studies that may pave the way for more stable multicomponent formulations.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Pioglitazone/pharmacokinetics , Chemistry, Pharmaceutical , Drug Liberation , Hydrogen-Ion Concentration , Pioglitazone/chemistry , Salts/chemistry , Solubility , Spectrum Analysis, Raman , Tablets
3.
J Microencapsul ; 28(2): 108-21, 2011.
Article in English | MEDLINE | ID: mdl-21265712

ABSTRACT

Spray dried microparticles containing mupirocin calcium were designed as acrylic matrix carriers with modulated drug release for efficient local drug delivery at minimum daily dose. Particle generation in spray drying and its effect on release performance were assessed by varying drug : polymer ratios with consequently altered initial saturations. Narrow-sized microparticles with mean diameters of 1.7-2.5 µm were obtained. Properties of the generated solid dispersions were examined by X-ray, thermal (thermogravimetric analysis, modulated differential scanning calorimetry) and spectroscopic (Fourier transformed infrared, Fourier transformed Raman) methods and correlated with drug loading and in vitro release. The best control over mupirocin release was achieved for 2 : 1 (w/w) drug : polymer ratio and found to be strongly process-dependent. For a particular ratio, increased feed concentration (>4%) boosted while increased inlet temperature (≥ 100 °C) reduced drug release. Antimicrobial activity testing confirmed that encapsulated drug preserved its antibacterial effectiveness. Conclusively, spray drying was proven as a suitable method for preparing structured microparticles which can control drug release even at exceptionally high drug loadings.


Subject(s)
Acrylic Resins/chemistry , Anti-Bacterial Agents/chemistry , Mupirocin/chemistry , Delayed-Action Preparations/chemistry , Particle Size
4.
Acta Pharm ; 55(3): 223-36, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16375834

ABSTRACT

The aim of this work was to evaluate the role of cyclodextrins in topical drug formulations. Solid piroxicam (PX) complexes with beta-cyclodextrin (beta-CD) and randomly methylated beta-cyclodextrin (RAMEB) were prepared by freeze-drying and characterized using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR) and near infrared spectroscopy (NIR). A physical mixture of PX and cyclodextrins was characterized by enhanced dissolution properties compared to the dissolution profile of the pure drug due to in situ complex formation. Formation of the PX-cyclodextrin inclusion complex additionally improved the drug dissolution properties. Influence of CDs on drug permeation from the water dispersion and the prepared hydroxypropyl methylcellulose (HPMC) gels was investigated. Permeation of the drug involved three consecutive processes: dissolution of the solid phase, diffusion across the swollen polymer matrix and drug permeation through the membrane. Complexation increased PX diffusion by increasing the amount of diffusible species in the donor phase. Slower drug diffusion through the HPMC matrix was the rate limiting step in the overall diffusion process. Possible interaction between the hydrophilic polymer and cyclodextrin may result in physicochemical changes, especially in a change of rheological parameters.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclodextrins/chemistry , Drug Carriers/chemistry , Piroxicam/chemistry , Administration, Topical , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Drug Compounding , Drug Stability , Freeze Drying , Gels , Hypromellose Derivatives , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Piroxicam/administration & dosage , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...