Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37050628

ABSTRACT

Memory isolation is an essential technology for safeguarding the resources of lightweight embedded systems. This technique isolates system resources by constraining the scope of the processor's accessible memory into distinct units known as domains. Despite the security offered by this approach, the Memory Protection Unit (MPU), the most common memory isolation method provided in most lightweight systems, incurs overheads during domain switching due to the privilege level intervention. However, as IoT environments become increasingly interconnected and more resources become required for protection, the significant overhead associated with domain switching under this constraint is expected to be crucial, making it harder to operate with more granular domains. To mitigate these issues, we propose DEMIX, which supports efficient memory isolation for multiple domains. DEMIX comprises two mainelements-Domain-Enforced Memory Isolation and instruction-level domain isolation-with the primary idea of enabling granular access control for memory by validating the domain state of the processor and the executed instructions. By achieving fine-grained validation of memory regions, our technique safely extends the supported domain capabilities of existing technologies while eliminating the overhead associated with switching between domains. Our implementation of eight user domains shows that our approach yields a hardware overhead of a slight 8% in Ibex Core, a very lightweight RISC-V processor.

2.
Sensors (Basel) ; 22(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35214295

ABSTRACT

In recent decades, there has been an increasing number of studies on control flow integrity (CFI), particularly those implementing hardware-assisted CFI solutions that utilize a special instruction set extension. More recently, ARM and Intel, which are prominent processor architectures, also announced instruction set extensions for CFI called branch target identification (BTI) and control-flow enhancement technology (CET), respectively. However, according to our preliminary analysis, they do not support various CFI solutions in an efficient and scalable manner. In this study, we propose Bratter, a new instruction set extension for forward CFI solutions on RISC-V. At the center of Bratter, there are Branch Tag Registers and dedicated instructions for these registers. We implemented well-known CFI solutions (i.e., branch regulation and function signature check) using Bratter to evaluate its performance. Our experimental results show that, by using Bratter, even when these two solutions work together, they impose only 1.20% and 5.99% overhead for code size and execution time, respectively.


Subject(s)
Computers
3.
Sensors (Basel) ; 21(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833846

ABSTRACT

Commodity processor architectures are releasing various instruction set extensions to support security solutions for the efficient mitigation of memory vulnerabilities. Among them, tagged memory extension (TME), such as ARM MTE and SPARC ADI, can prevent unauthorized memory access by utilizing tagged memory. However, our analysis found that TME has performance and security issues in practical use. To alleviate these, in this paper, we propose CoMeT, a new instruction set extension for tagged memory. The key idea behind CoMeT is not only to check whether the tag values in the address tag and memory tag are matched, but also to check the access permissions for each tag value. We implemented the prototype of CoMeT on the RISC-V platform. Our evaluation results confirm that CoMeT can be utilized to efficiently implement well-known security solutions, i.e., shadow stack and in-process isolation, without compromising security.

4.
J Chem Phys ; 134(6): 064506, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21322704

ABSTRACT

Ultrafast two-dimensional infrared (2DIR) spectroscopy has been proven to be an exceptionally useful method to study chemical exchange processes between different vibrational chromophores under thermal equilibria. Here, we present experimental results on the thermal equilibrium ion pairing dynamics of Li(+) and SCN(-) ions in N,N-dimethylformamide. Li(+) and SCN(-) ions can form a contact ion pair (CIP). Varying the relative concentration of Li(+) in solution, we could control the equilibrium CIP and free SCN(-) concentrations. Since the CN stretch frequency of Li-SCN CIP is blue-shifted by about 16 cm(-1) from that of free SCN(-) ion, the CN stretch IR spectrum is a doublet. The temperature-dependent IR absorption spectra reveal that the CIP formation is an endothermic (0.57 kJ∕mol) process and the CIP state has larger entropy by 3.12 J∕(K mol) than the free ion states. Since the two ionic configurations are spectrally distinguishable, this salt solution is ideally suited for nonlinear IR spectroscopic investigations to study ion pair association and dissociation dynamics. Using polarization-controlled IR pump-probe methods, we first measured the lifetimes and orientational relaxation times of these two forms of ionic configurations. The vibrational population relaxation times of both the free ion and CIP are about 32 ps. However, the orientational relaxation time of the CIP, which is ∼47 ps, is significantly longer than that of the free SCN(-), which is ∼7.7 ps. This clearly indicates that the effective moment of inertia of the CIP is much larger than that of the free SCN(-). Then, using chemical exchange 2DIR spectroscopy and analyzing the diagonal peak and cross-peak amplitude changes with increasing the waiting time, we determined the contact ion pair association and dissociation time constants that are found to be 165 and 190 ps, respectively. The results presented and discussed in this paper are believed to be important, not only because the ion-pairing dynamics is one of the most fundamental physical chemistry problems but also because such molecular ion-ion interactions are of critical importance in understanding Hofmeister effects on protein stability.


Subject(s)
Dimethylformamide/chemistry , Lithium/chemistry , Thermodynamics , Thiocyanates/chemistry , Solutions , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...