Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(36): 21995-21999, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069412

ABSTRACT

Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which structural change accompanies ICT. Herein, we used time-resolved spectroscopy to study TICT in pyrene derivatives that are promising blue organic light emitting diode (OLED) emitter candidates; these derivatives show strong solvent-dependent charge-transfer (CT) behavior with unique fluorescence properties, increased fluorescence intensity in polar solvent. Slight structural changes that do not affect excited state dynamics were observed in nonpolar solvents, while polar solvents were found to affect excited state dynamics and CT characteristics, which affect their unusual fluorescence behavior. The TICT behavior of these pyrene derivatives can be modulated through structural modification. Our study provides valuable guidelines for the control of optical properties, including the luminescence efficiencies of OLED emitters that show TICT characteristics.

2.
Adv Sci (Weinh) ; 9(3): e2102141, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34802190

ABSTRACT

To utilize thermally activated delayed fluorescence (TADF) technology for future displays, it is necessary to develop host materials which harness the full potential of blue TADF emitters. However, no publication has reported such hosts yet. Although the most popular host for blue TADF, bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) guarantees high-maximum external quantum efficiency (EQEmax ) TADF devices, they exhibit very short operational lifetimes. In contrast, long-lifespan blue TADF devices employing stable hosts such as 3',5-di(9H-carbazol-9-yl)-[1,1'-biphenyl]-3-carbonitrile (mCBP-CN) exhibit much lower EQEmax than the DPEPO-employed devices. Here, an elaborative approach for designing host molecules is suggested to achieve simultaneously stable and efficient blue TADF devices. The approach is based on engineering the molecular geometry, ground- and excited-state dipole moments of host molecules. The engineered hosts significantly enhance delayed fluorescence quantum yields of TADF emitters, as stabilizing the charge-transfer excited states of the TADF emitters and suppressing exciton quenching, and improve the charge balance. Moreover, they exhibit both photochemical and electrochemical stabilities. The best device employing one of the engineered hosts exhibits 79% increase in EQEmax compared to the mCBP-CN-employed device, together with 140% and 92-fold increases in operational lifetime compared to the respective mCBP-CN- and the DPEPO-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...