Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667207

ABSTRACT

This paper introduces a reinforcement learning method that leverages task decomposition and a task-specific reward system to address complex high-level tasks, such as door opening, block stacking, and nut assembly. These tasks are decomposed into various subtasks, with the grasping and putting tasks executed through single joint and gripper actions, while other tasks are trained using the SAC algorithm alongside the task-specific reward system. The task-specific reward system aims to increase the learning speed, enhance the success rate, and enable more efficient task execution. The experimental results demonstrate the efficacy of the proposed method, achieving success rates of 99.9% for door opening, 95.25% for block stacking, 80.8% for square-nut assembly, and 90.9% for round-nut assembly. Overall, this method presents a promising solution to address the challenges associated with complex tasks, offering improvements over the traditional end-to-end approach.

2.
Biomimetics (Basel) ; 8(2)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37366835

ABSTRACT

This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one grasping task. One of the two reaching tasks is approaching the object, and the other is reaching the place position. These two reaching tasks are carried out using each optimal policy of the agents which are trained using Soft Actor-Critic (SAC). Different from the two reaching tasks, the grasping is implemented via simple logic which is easily designable but may result in improper gripping. To assist the grasping task properly, a dedicated reward system for approaching the object is designed through using individual axis-based weights. To verify the validity of the proposed method, wecarry out various experiments in the MuJoCo physics engine with the Robosuite framework. According to the simulation results of four trials, the robot manipulator picked up and released the object in the goal position with an average success rate of 93.2%.

SELECTION OF CITATIONS
SEARCH DETAIL
...