Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(5): 4434-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21780471

ABSTRACT

Nanoporous silica membranes were fabricated using 3-aminopropyltriethoxysilane (APS) and acyl chloride-functionalized multiwalled carbon nanotubes (MWCNTs). The amine groups of silane reacted with the functional groups (e.g., acid chloride) that were attached to the sidewall of the MWCNTs. The APS that was grafted to the sidewall of the MWCNTs was polymerized in order to coat the MWCNTs wall through heating. The thickness of the silica layer on the surface of the MWCNTs was controlled by adjusting the growth time of the SiO2 layer. Approximately 20 nm-sized pores were formed through the removal of the MWCNTs using a simple thermal process, but some traces of the MWCNTs still remained. The porous properties of the nanoporous silica membrane were analyzed from the nitrogen adsorption-desorption isotherms that were obtained using a surface area and porosimetry analyzer. The structure and composition of the silane-modified MWCNTs were characterized using scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy.

2.
J Nanosci Nanotechnol ; 10(5): 3576-80, 2010 May.
Article in English | MEDLINE | ID: mdl-20359003

ABSTRACT

An organoclay containing epoxy groups, twice-functionalized organoclay (TFC), was synthesized by reacting (glycidoxypropyl)trimethoxy silane with Cloisite25A (C25A), which had already been modified with an amine compound. The introduction of epoxy groups to the clay surface and carboxylic group-functionalized multiwalled carbon nanotubes (MWCNTs) improved the interfacial adhesion between the poly(L-lactide) (PLLA) and nano-sized fillers when melt-compounded. The PLLA/MWCNTs/TFC nanocomposites showed superior tensile properties to those of PLLA and PLLA/CNTs. The dispersion of MWCNTs in the PLLA matrix decreased the electrical resistivity of the composite substantially due to the higher MWCNT loading. However, the introduction of TFC to the PLLA/MWCNTs nanocomposites resulted in a slight increase in volume resistivity. This increase was attributed to the individual MWCNTs being blocked by the TFC. The clays in the PLLA/MWCNTs/TFC nanocomposites prevented direct contact between the neighboring MWCNTs, which increased the electrical resistivity of the nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...