Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Dev Cell ; 58(3): 224-238.e7, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36693371

ABSTRACT

Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.


Subject(s)
Endothelial Cells , Zebrafish , Animals , Endoderm , Hematopoietic Stem Cells/physiology , Endothelium
2.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628521

ABSTRACT

Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61. Compared to blood endothelial cells, GPRC5B is the most abundant GPCR expressed in cultured human lymphatic endothelial cells (LECs), and in situ RNAscope shows high mRNA levels in lymphatics of mice. Using genetic engineering approaches in both zebrafish and mice, we characterized the function of GPRC5B in lymphatic development. Morphant gprc5b zebrafish exhibited failure of thoracic duct formation, and Gprc5b-/- mice suffered from embryonic hydrops fetalis and hemorrhage associated with subcutaneous edema and blood-filled lymphatic vessels. Compared to Gprc5+/+ littermate controls, Gprc5b-/- embryos exhibited attenuated developmental lymphangiogenesis. During the postnatal period, ~30% of Gprc5b-/- mice were growth-restricted or died prior to weaning, with associated attenuation of postnatal cardiac lymphatic growth. In cultured human primary LECs, expression of GPRC5B is required to maintain cell proliferation and viability. Collectively, we identify a novel role for the lymphatic-enriched orphan GPRC5B receptor in lymphangiogenesis of fish, mice and human cells. Elucidating the roles of orphan GPCRs in lymphatics provides new avenues for discovery of druggable targets to treat lymphatic-related conditions such as lymphedema and cancer.


Subject(s)
Endothelial Cells , Receptors, G-Protein-Coupled/metabolism , Zebrafish , Animals , Cells, Cultured , Endothelial Cells/metabolism , Mice , Signal Transduction , Zebrafish/genetics , Zebrafish/metabolism
3.
Elife ; 92020 09 21.
Article in English | MEDLINE | ID: mdl-32955436

ABSTRACT

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.


Subject(s)
Blood Vessels/growth & development , Chemokines/genetics , Morphogenesis/genetics , Signal Transduction/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Blood Vessels/metabolism , Chemokines/metabolism , Endothelial Cells/metabolism , Zebrafish Proteins/metabolism
4.
ACS Pharmacol Transl Sci ; 3(4): 676-689, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32832870

ABSTRACT

The G protein-coupled receptor 182 (GPR182) is an orphan GPCR, the expression of which is enriched in embryonic endothelial cells (ECs). However, the physiological role and molecular mechanism of action of GPR182 are unknown. Here, we show that GPR182 negatively regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium (HE), and gpr182 -/- display an increased expression of HE and hematopoietic stem cell (HSC) marker genes. Notably, we find an increased number of myeloid cells in gpr182 -/- compared to wild-type. Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic transition, we find that HE/HSC cell numbers are increased in gpr182 -/- compared to wild-type. GPR182 -/- mice also exhibit an increased number of myeloid cells compared to wild-type, indicating a conserved role for GPR182 in myelopoiesis. Using cell-based small molecule screening and transcriptomic analyses, we further find that GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken together, these data indicate that GPR182 is a negative regulator of definitive hematopoiesis in zebrafish and mice, and provide further evidence for LTB4 signaling in HSC biology.

5.
FASEB J ; 34(6): 8702-8720, 2020 06.
Article in English | MEDLINE | ID: mdl-32385864

ABSTRACT

Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.


Subject(s)
Cell Adhesion Molecules, Neuronal/deficiency , Colitis/metabolism , Colitis/pathology , Gastrointestinal Microbiome/physiology , Macrophages/metabolism , Macrophages/pathology , Nerve Growth Factors/deficiency , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Colitis/microbiology , Colon/metabolism , Colon/microbiology , Colon/pathology , Disease Models, Animal , Homeostasis/physiology , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Macrophage Activation/physiology , Male , Mice , Nerve Growth Factors/metabolism , THP-1 Cells/metabolism
6.
Commun Biol ; 3(1): 265, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457386

ABSTRACT

Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton.


Subject(s)
Endothelial Cells/metabolism , RNA, Long Noncoding/metabolism , Biomechanical Phenomena , Human Umbilical Vein Endothelial Cells , Humans , Stress, Mechanical
7.
Development ; 146(14)2019 07 24.
Article in English | MEDLINE | ID: mdl-31142539

ABSTRACT

An early step in pancreas development is marked by the expression of the transcription factor Pdx1 within the pancreatic endoderm, where it is required for the specification of all endocrine cell types. Subsequently, Pdx1 expression becomes restricted to the ß-cell lineage, where it plays a central role in ß-cell function. This pivotal role of Pdx1 at various stages of pancreas development makes it an attractive target to enhance pancreatic ß-cell differentiation and increase ß-cell function. In this study, we used a newly generated zebrafish reporter to screen over 8000 small molecules for modulators of pdx1 expression. We found four hit compounds and validated their efficacy at different stages of pancreas development. Notably, valproic acid treatment increased pancreatic endoderm formation, while inhibition of TGFß signaling led to α-cell to ß-cell transdifferentiation. HC toxin, another HDAC inhibitor, enhances ß-cell function in primary mouse and human islets. Thus, using a whole organism screening strategy, this study identified new pdx1 expression modulators that can be used to influence different steps in pancreas and ß-cell development.


Subject(s)
Drug Evaluation, Preclinical/methods , Islets of Langerhans/embryology , Models, Animal , Organogenesis/drug effects , Small Molecule Libraries/analysis , Zebrafish , Animals , Animals, Genetically Modified , COS Cells , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , Chlorocebus aethiops , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/isolation & purification , Histone Deacetylase Inhibitors/pharmacology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Islets of Langerhans/drug effects , Islets of Langerhans/growth & development , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL , Organogenesis/genetics , Small Molecule Libraries/isolation & purification , Trans-Activators/genetics , Trans-Activators/metabolism , Valproic Acid/isolation & purification , Valproic Acid/pharmacology , Zebrafish/embryology , Zebrafish/genetics
8.
Nat Commun ; 7: 11805, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27248505

ABSTRACT

Endothelial cells (ECs) respond to shear stress by aligning in the direction of flow. However, how ECs respond to flow in complex in vivo environments is less clear. Here we describe an endothelial-specific transgenic zebrafish line, whereby the Golgi apparatus is labelled to allow for in vivo analysis of endothelial polarization. We find that most ECs polarize within 4.5 h after the onset of vigorous blood flow and, by manipulating cardiac function, observe that flow-induced EC polarization is a dynamic and reversible process. Based on its role in EC migration, we analyse the role of Apelin signalling in EC polarization and find that it is critical for this process. Knocking down Apelin receptor function in human primary ECs also affects their polarization. Our study provides new tools to analyse the mechanisms of EC polarization in vivo and reveals an important role in this process for a signalling pathway implicated in cardiovascular disease.


Subject(s)
Apelin Receptors/genetics , Apelin/genetics , Cell Polarity , Chemokines/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Apelin/metabolism , Apelin Receptors/metabolism , Biomechanical Phenomena , Cell Movement , Chemokines/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Golgi Apparatus/metabolism , Hemorheology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/ultrastructure , Humans , In Situ Hybridization, Fluorescence , Larva/genetics , Larva/growth & development , Larva/metabolism , Signal Transduction , Stress, Mechanical , Zebrafish , Zebrafish Proteins/metabolism
9.
Development ; 140(19): 4081-90, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24046321

ABSTRACT

Blood vessels and neurons grow often side by side. However, the molecular and cellular mechanisms underlying their parallel development remain unclear. Here, we report that a subpopulation of secondary motoneurons extends axons ventrally outside of the neural tubes and rostrocaudally as a fascicle beneath the dorsal aorta (DA) in zebrafish. We tried to clarify the mechanism by which these motoneuron axons grow beneath the DA and found that Vegfc in the DA and Vegfr3 in the motoneurons were essential for the axon growth. Forced expression of either Vegfc in arteries or Vegfr3 in motoneurons resulted in enhanced axon growth of motoneurons over the DA. Both vegfr3 morphants and vegfc morphants lost the alignment of motoneuron axons with DA. In addition, forced expression of two mutant forms of Vegfr3 in motoneurons, potentially trapping endogenous Vegfc, resulted in failure of growth of motoneuron axons beneath the DA. Finally, a vegfr3 mutant fish lacked the motoneuron axons beneath the DA. Collectively, Vegfc from the preformed DA guides the axon growth of secondary motoneurons.


Subject(s)
Aorta/cytology , Aorta/metabolism , Axons/metabolism , Motor Neurons/cytology , Motor Neurons/metabolism , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish Proteins/metabolism , Animals , Signal Transduction/genetics , Signal Transduction/physiology , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Zebrafish , Zebrafish Proteins/genetics
10.
Exp Mol Med ; 44(3): 225-35, 2012 Mar 31.
Article in English | MEDLINE | ID: mdl-22192928

ABSTRACT

The integrity of blood vessels controls vascular permeability and extravasation of blood cells, across the endothelium. Thus, the impairment of endothelial integrity leads to hemorrhage, edema, and inflammatory infiltration. However, the molecular mechanism underlying vascular integrity has not been fully understood. Here, we demonstrate an essential role for A-kinase anchoring protein 12 (AKAP12) in the maintenance of endothelial integrity during vascular development. Zebrafish embryos depleted of akap12 (akap12 morphants) exhibited severe hemorrhages. In vivo time-lapse analyses suggested that disorganized interendothelial cell-cell adhesions in akap12 morphants might be the cause of hemorrhage. To clarify the molecular mechanism by which the cell-cell adhesions are impaired, we examined the cell-cell adhesion molecules and their regulators using cultured endothelial cells. The expression of PAK2, an actin cytoskeletal regulator, and AF6, a connector of intercellular adhesion molecules and actin cytoskeleton, was reduced in AKAP12-depleted cells. Depletion of either PAK2 or AF6 phenocopied AKAP12-depleted cells, suggesting the reduction of PAK2 and AF6 results in the loosening of intercellular junctions. Consistent with this, overexpression of PAK2 and AF6 rescued the abnormal hemorrhage in akap12 morphants. We conclude that AKAP12 is essential for integrity of endothelium by maintaining the expression of PAK2 and AF6 during vascular development.


Subject(s)
A Kinase Anchor Proteins/genetics , Blood Vessels/embryology , Embryo, Nonmammalian/blood supply , Gene Expression Regulation, Developmental , Hemorrhage/embryology , Zebrafish/embryology , A Kinase Anchor Proteins/metabolism , Animals , Blood Vessels/abnormalities , Blood Vessels/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Down-Regulation , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Deletion , Hemorrhage/genetics , Hemorrhage/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Intercellular Junctions/ultrastructure , Kinesins/genetics , Kinesins/metabolism , Myosins/genetics , Myosins/metabolism , Zebrafish/genetics , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
11.
Brain Res Bull ; 75(5): 619-28, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18355638

ABSTRACT

The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and protecting the brain from toxic substances. Breakdown of this barrier results in severe brain pathologies, whereas impermeability of the BBB is a major obstacle for drug delivery to the brain. Despite its importance, our understanding of the maturation and modulation of the BBB is limited. Zebrafish (Danio rerio) has emerged as a useful model organism for studying vertebrate development and disease mechanisms, as well as for preclinical drug screening. However, the nature of the BBB has not yet been examined in teleost fish. In this paper, we report that with the exception of the circumventricular organs, the cerebral microvessels in zebrafish are impermeable to sulfo-NHS-biotin and horseradish peroxidase (HRP). Brain endothelial cells show immunoreactivity to Claudin-5 and Zonula Occludens-1 (ZO-1), implying the presence of tight junctions in these cells. The expression of Claudin-5 and ZO-1 was detected in cerebral microvessels from 3 days post-fertilization (dpf), concomitant with maturation of the BBB, as determined by restricted permeability to HRP and various fluorescent tracers. Real-time analysis of fluorescent tracer leakage in embryonic zebrafish suggests that they may be used as an in vivo model for BBB breakdown. Taken together, our results show that the endothelial tight junction-based BBB of zebrafish is similar to that of higher vertebrates and thus, zebrafish may be an excellent genetic and experimental model organism for studying development and maintenance of the BBB.


Subject(s)
Blood-Brain Barrier/growth & development , Blood-Brain Barrier/metabolism , Animals , Animals, Genetically Modified , Biological Transport/physiology , Biotin/metabolism , Capillary Permeability , Embryo, Nonmammalian , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Horseradish Peroxidase/metabolism , Membrane Proteins , Proto-Oncogene Protein c-fli-1/biosynthesis , Proto-Oncogene Protein c-fli-1/genetics , Tight Junctions/physiology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...