Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 10(5): 3216-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20358925

ABSTRACT

Microporous thermal insulations were prepared from mixtures of nano-sized fumed silica, micron-sized fibers and opacifier particles. Those micron-sized particles were dry coated with nano-sized fumed silica particles by mechanical process using a compressive-shear type mill. The effect of nanoparticle coating on the thermal conductivity of the insulation media was investigated using a hot-wire method. Effect of nanoparticle coating was found to be more pronounced for the insulation composed of fumed silica and fiber than for the one composed of fumed silica, fiber and an opacifier. By adding 15% SiC or TiO2 opacifier, the thermal conductivity of the insulation samples could be lowered to 0.08 Wm(-1) K(-1) at temperature range of 805 approximately 817 degrees C. The temperature dependent thermal conductivity of the sample containing glass fiber did not exhibit any remarkable changes compared to the one containing ceramic fiber.

2.
J Nanosci Nanotechnol ; 8(10): 5052-6, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19198389

ABSTRACT

Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...