Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Science ; 384(6693): 312-317, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669572

ABSTRACT

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

2.
J Radiat Res ; 64(6): 973-981, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37839093

ABSTRACT

The patient-specific bolus fabricated by a mold-and-cast method using a 3D printer (3DP) and silicon rubber has been adopted in clinical practices. Manufacturing a mold using 3DP, however, can cause time delays due to failures during the 3D printing process. Thereby, we investigated an alternative method of the mold fabrication using computer numerical control (CNC) machine tools. Treatment plans were conducted concerning a keloid scar formed on the ear and nose. The bolus structures were determined in a treatment planning system (TPS), and the molds were fabricated using the same structure file but with 3DP and CNC independently. Boluses were then manufactured using each mold with silicone rubbers. We compared the geometrical difference between the boluses and the planned structure using computed tomography (CT) images of the boluses. In addition, dosimetric differences between the two measurements using each bolus and the differences between the measured and calculated dose from TPS were evaluated using an anthropomorphic head phantom. Geometrically, the CT images of the boluses fabricated by the 3DP mold and the CNC mold showed differences compared to the planned structure within 2.6 mm of Hausdorff distance. The relative dose difference between the measurements using either bolus was within 2.3%. In conclusion, the bolus made by the CNC mold benefits from a stable fabricating process, retaining the performance of the bolus made by the 3DP mold.


Subject(s)
Computers , Printing, Three-Dimensional , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
3.
ACS Appl Mater Interfaces ; 15(1): 1629-1638, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36592389

ABSTRACT

Organic electrochemical transistors (OECTs) have enormous potential for use in biosignal amplifiers, analyte sensors, and neuromorphic electronics owing to their exceptionally large transconductance. However, it is challenging to simultaneously achieve high charge carrier mobility and volumetric capacitance, the two most important figures of merit in OECTs. Herein, a method of achieving high-performance OECT with donor-acceptor conjugated copolymers by introducing fluorine units is proposed. A series of cyclopentadithiophene-benzothiadiazole (CDT-BT) copolymers for use in high-performance OECTs with enhanced charge carrier mobility (from 0.65 to 1.73 cm2·V-1·s-1) and extended volumetric capacitance (from 44.8 to 57.6 F·cm-3) by fluorine substitution is achieved. The increase in the volumetric capacitance of the fluorinated polymers is attributed to either an increase in the volume at which ions can enter the film or a decrease in the effective distance between the ions and polymer backbones. The fluorine substitution increases the backbone planarity of the CDT-BT copolymers, enabling more efficient charge carrier transport. The fluorination strategy of this work suggests the more versatile use of conjugated polymers for high-performance OECTs.

4.
Biosens Bioelectron ; 222: 114958, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36502715

ABSTRACT

Organic thin-film transistors (TFTs) with an electrochemically functionalized sensing gate are promising platforms for wearable health-monitoring technologies because they are light, flexible, and cheap. Achieving both high sensitivity and low power is highly demanding for portable or wearable devices. In this work, we present flexible printed dual-gate (DG) organic TFTs operating in the subthreshold regime with ultralow power and high sensitivity. The subthreshold operation of the gate-modulated TFT-based sensors not only increases the sensitivity but also reduces the power consumption. The DG configuration has deeper depletion and stronger accumulation, thereby further making the subthreshold slope sharper. We integrate an enzymatic lactate-sensing extended-gate electrode into the printed DG TFT and achieve exceptionally high sensitivity (0.77) and ultralow static power consumption (10 nW). Our sensors are successfully demonstrated in physiological lactate monitoring with human saliva. The accuracy of the DG TFT sensing system is as good as that of a high-cost conventional assay. The developed platform can be readily extended to various materials and technologies for high performance wearable sensing applications.


Subject(s)
Biosensing Techniques , Lactic Acid , Humans , Biological Assay , Electrodes , Saliva
5.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557874

ABSTRACT

Tomato is a widely distributed, cultivated, and commercialized vegetable crop. It contains antioxidant constituents including lycopene, tocopherols, vitamin C, γ-aminobutyric acid, phenols, and flavonoids. This study determined the contents of the antioxidant components and activities of the pulp with skin of ten regular, six medium-sized, and two small cherry tomato cultivars at red ripe (BR + 10) stage cultivated in Korea. The relationships among the Hunter color coordinates, the content of each component, and antioxidant activities were measured by Pearson's correlation coefficients. As the a* value increased, the carotenoid and vitamin C contents increased, while the L* value, hue angle and tocopherol content decreased. As the b* value increased, the lycopene and total carotenoid contents decreased, and the flavonoid content in the hydrophilic extracts increased. The contents of vitamin C and total carotenoids including lycopene showed high positive correlations with the DPPH radical scavenging activities of both the lipophilic and hydrophilic extracts. Tocopherols and total phenolics in the hydrophilic and lipophilic extracts were not major positive contributors to the antioxidant activity. These findings suggest the quality standards for consumer requirements and inputs for on-going research for the development of better breeds.


Subject(s)
Antioxidants , Solanum lycopersicum , Antioxidants/chemistry , Lycopene , Plant Breeding , Carotenoids/chemistry , Ascorbic Acid , Tocopherols , Flavonoids/chemistry , Phenols/analysis , Vitamins , Republic of Korea
6.
ACS Nano ; 16(1): 368-377, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34910466

ABSTRACT

Wearable pressure sensors have demonstrated great potential in detecting pulse pressure waves on the skin for the noninvasive and continuous diagnosis of cardiac conditions. However, difficulties lie in positioning conventional single-point sensors on an invisible arterial line, thereby preventing the detection of adequate signal amplitude for accurate pulse wave analysis. Herein, we introduce the spatiotemporal measurements of arterial pulse waves using wearable active-matrix pressure sensors to obtain optimal pulse waveforms. We fabricate thin-film transistor (TFT) arrays with high yield and uniformity using inkjet printing where array sizes can be customizable and integrate them with highly sensitive piezoresistive sheets. We maximize the pressure sensitivity (16.8 kPa-1) and achieve low power consumption (101 nW) simultaneously by strategically modulating the TFT operation voltage. The sensor array creates a spatiotemporal pulse wave map on the wrist. The map presents the positional dependence of pulse amplitudes, which allows the positioning of the arterial line to accurately extract the augmentation index, a parameter for assessing arterial stiffness. The device overcomes the positional inaccuracy of conventional single-point sensors, and therefore, it can be used for medical applications such as arterial catheter injection or the diagnosis of cardiovascular disease in daily life.


Subject(s)
Cardiovascular Diseases , Wearable Electronic Devices , Humans , Pulse Wave Analysis , Heart Rate , Printing, Three-Dimensional
7.
Plants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34961088

ABSTRACT

Ulmus species (Ulmaceae) are large deciduous trees distributed throughout Korea. Although their root and stem bark have been used to treat gastrointestinal diseases and wounds in folk medicine, commercial products are consumed without any standardization. Therefore, we examined anatomical and chemical differences among five Ulmus species in South Korea. Transverse sections of leaf, stem, and root barks were examined under a microscope to elucidate anatomical differences. Stem and root bark exhibited characteristic medullary ray and secretary canal size. Leaf surface, petiole, and midrib exhibited characteristic inner morphologies including stomatal size, parenchyma, and epidermal cell diameter, as well as ratio of vascular bundle thickness to diameter among the samples. Orthogonal projections to latent structures discriminant analysis of anatomical data efficiently differentiated the five species. To evaluate chemical differences among the five species, we quantified (-)-catechin, (-)-catechin-7-O-ß-D-apiofuranoside, (-)-catechin-7-O-α-L-rhamnopyranoside, (-)-catechin-7-O-ß-D-xylopyranoside, (-)-catechin-7-O-ß-D-glucopyranoside, and (-)-catechin-5-O-ß-D-apiofuranoside using high-performance liquid chromatography with a diode-array detector. (-)-Catechin-7-O-ß-D-apiofuranoside content was the highest among all compounds in all species, and (-)-catechin-7-O-α-L-rhamnopyranoside content was characteristically the highest in Ulmus parvifolia among the five species. Overall, the Ulmus species tested was able to be clearly distinguished on the basis of anatomy and chemical composition, which may be used as scientific criteria for appropriate identification and standard establishment for commercialization of these species.

8.
Langmuir ; 37(36): 10692-10701, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34468155

ABSTRACT

Digital inkjet printing (IJP) can greatly reduce the manufacturing cost and waste of flexible large-area electronics by adding micro-fine patterns onto plastic foils. Advanced system design using IJP has been limited by the lack of an electronic design automation (EDA) approach. An EDA approach based on a vector-based layout drawing requires parameterized IJP design rules. This study proposes a layout-to-bitmap (L2B) conversion procedure and line-based design rules that leverage the existing circuit layout EDA tools for advanced IJP designs. The L2B conversion is accomplished by optimizing the parameters of the horizontal and vertical lines by varying the drop spacings and platen temperatures. Next, the line-based layouts are converted to bitmap files which are used as IJP input data for printing multiple metal layers. This study systematically investigated the development of an IJP process employing Ag nanoparticles. The physical characteristics of the proposed process were evaluated based on theories concerning inkjet-printed bead formation. The design rules for fabricating printed thin-film transistor (TFT) circuits were documented. Documentation is the first step in creating an IJP process design kit for advanced electronics design. Using the optimized L2B conversion procedure and the design rules, a 10 × 10 array of printed organic TFTs was fabricated to demonstrate the reliability of the developed process. Additionally, the fabricated printed organic TFTs indicated that the proposed process could be extended to large-scale system designs.

9.
Sci Rep ; 11(1): 17097, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429492

ABSTRACT

Photoactivated atomic force microscopy (pAFM), which integrates light excitation and mechanical detection of the deflections of a cantilever tip, has become a widely used tool for probing nanoscale structures. Raising the illuminating laser power is an obvious way to boost the signal-to-noise ratio of pAFM, but strong laser power can damage both the sample and cantilever tip. Here, we demonstrate a dual-pulse pAFM (DP-pAFM) that avoids this problem by using two laser pulses with a time delay. The first laser heats the light absorber and alters the local Grüneisen parameter value, and the second laser boosts the mechanical vibration within the thermal relaxation time. Using this technique, we successfully mapped the optical structures of small-molecule semiconductor films. Of particular interest, DP-pAFM clearly visualized nanoscale cracks in organic semiconductor films, which create crucial problems for small-molecule semiconductors. DP-pAFM opens a promising new optical avenue for studying complex nanoscale phenomena in various research fields.

10.
Plants (Basel) ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668581

ABSTRACT

The fruit of Schisandra chinensis, Omija, is a well-known traditional medicine used as an anti-tussive and anti-diarrhea agent, with various biological activities derived from the dibenzocyclooctadiene-type lignans. A high-pressure liquid chromatography-diode array detector (HPLC-DAD) method was used to determine seven lignans (schisandrol A and B, tigloylgomisin H, angeloylgomisin H, schisandrin A, B, and C) in the different plant parts and beverages of the fruit of S. chinensis grown in Korea. The contents of these lignans in the plant parts descended in the following order: seeds, flowers, leaves, pulp, and stems. The total lignan content in Omija beverages fermented with white sugar for 12 months increased by 2.6-fold. Omija was fermented for 12 months with white sugar, brown sugar, and oligosaccharide/white sugar (1:1, w/w). The total lignan content in Omija fermented with oligosaccharide/white sugar was approximately 1.2- and 1.7-fold higher than those fermented with white sugar and brown sugar, respectively. A drink prepared by immersion of the fruit in alcohol had a higher total lignan content than these fermented beverages. This is the first report documenting the quantitative changes in dibenzocyclooctadiene-type lignans over a fermentation period and the effects of the fermentable sugars on this eco-friendly fermentation process.

11.
Science ; 370(6519): 961-965, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33214277

ABSTRACT

Human skin has different types of tactile receptors that can distinguish various mechanical stimuli from temperature. We present a deformable artificial multimodal ionic receptor that can differentiate thermal and mechanical information without signal interference. Two variables are derived from the analysis of the ion relaxation dynamics: the charge relaxation time as a strain-insensitive intrinsic variable to measure absolute temperature and the normalized capacitance as a temperature-insensitive extrinsic variable to measure strain. The artificial receptor with a simple electrode-electrolyte-electrode structure simultaneously detects temperature and strain by measuring the variables at only two measurement frequencies. The human skin-like multimodal receptor array, called multimodal ion-electronic skin (IEM-skin), provides real-time force directions and strain profiles in various tactile motions (shear, pinch, spread, torsion, and so on).


Subject(s)
Body Temperature , Receptors, Artificial , Skin Physiological Phenomena , Touch , Electric Impedance , Humans , Ion-Selective Electrodes , Shear Strength , Torsion, Mechanical
12.
Sci Rep ; 10(1): 13406, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32747807

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Macromol Biosci ; 20(11): e2000144, 2020 11.
Article in English | MEDLINE | ID: mdl-32613734

ABSTRACT

Organic transistors are promising platforms for wearable biosensors. However, the strategies to improve signal amplification have yet to be determined, particularly regarding biosensors that generate very weak signals. In this study, an organic voltage amplifier is presented for a lactate sensor on flexible plastic foil. The preamplifier is based on a 3D complementary inverter, which is achieved by vertically stacking complementary transistors with a shared gate between them. The shared gate is extended and functionalized with a lactate oxidase enzyme to detect lactate. The sensing device successfully detects the lactate concentration in the human sweat range (20-60 mm) with high sensitivity (6.82 mV mm-1 ) due to high gain of its amplification. The 3D integration process is cost-effective as it is solution-processable and doubles the number of transistors per unit area. The device presented in this study would pave the way for the development of high-gain noninvasive sweat lactate sensors that can be wearable.


Subject(s)
Amplifiers, Electronic , Biosensing Techniques/methods , Lactic Acid/analysis , Limit of Detection , Mixed Function Oxygenases/metabolism , Transistors, Electronic
14.
ACS Appl Mater Interfaces ; 11(34): 31111-31118, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31373197

ABSTRACT

Organic thin-film transistor (TFT)-based pressure sensors have received huge attention for wearable electronic applications such as health monitoring and smart robotics. However, there still remains a challenge to achieve low power consumption and high sensitivity at the same time for the realization of truly wearable sensor systems where minimizing power consumption is significant because of limited battery run time. Here, we introduce a flexible pressure-sensitive contact transistor (PCT), a new type of pressure-sensing device based on organic TFTs for next-generation wearable electronic skin devices. The PCT consists of deformable S/D electrodes integrated on a staggered TFT. The deformable S/D electrodes were fabricated by embedding conducting single-walled carbon nanotubes on the surface of microstructured polydimethylsiloxane. Under pressure loads, the deformation of the electrodes on an organic semiconductor layer leads modulation of drain current from variation in both the channel geometry and contact resistance. By strategic subthreshold operation to minimize power consumption and increase the dominance of contact resistance because of gated Schottky contact, the PCT achieves both ultralow power consumption (order of 101 nW) and high sensitivity (18.96 kPa-1). Finally, we demonstrate a 5 × 5 active matrix PCT array on a 3 µm-thick parylene substrate. The device with ultralow power consumption and high sensitivity on a biocompatible flexible substrate makes the PCT promising candidate for next-generation wearable electronic skin devices.

15.
Nat Commun ; 10(1): 54, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604747

ABSTRACT

Direct printing of thin-film transistors has enormous potential for ubiquitous and lightweight wearable electronic applications. However, advances in printed integrated circuits remain very rare. Here we present a three-dimensional (3D) integration approach to achieve technology scaling in printed transistor density, analogous to Moore's law driven by lithography, as well as enhancing device performance. To provide a proof of principle for the approach, we demonstrate the scalable 3D integration of dual-gate organic transistors on plastic foil by printing with high yield, uniformity, and year-long stability. In addition, the 3D stacking of three complementary transistors enables us to propose a programmable 3D logic array as a new route to design printed flexible digital circuitry essential for the emerging applications. The 3D monolithic integration strategy demonstrated here is applicable to other emerging printable materials, such as carbon nanotubes, oxide semiconductors and 2D semiconducting materials.

16.
ACS Appl Mater Interfaces ; 10(44): 37767-37772, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30358384

ABSTRACT

We demonstrate high-performance and stable organic field-effect transistors (OFETs) using parylene-based double-layer gate dielectrics (DLGDs). DLGDs, consisting of parylene C as the upper layer and F as the lower layer, are designed to simultaneously provide good interface and bulk gate dielectric properties by exploiting the advantages of each gate dielectric. The structural effects of DLGDs are systematically investigated by evaluating the electrical characteristics and dielectric properties while varying the thickness ratio of each gate dielectric. The OFET with the optimized DLGD exhibits high performance and operational stability. This systematic approach will be useful for realizing practical electronic applications.

17.
Adv Mater ; 30(43): e1803388, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30216564

ABSTRACT

Human skin imperfectly discriminates between pressure and temperature stimuli under mixed stimulation, and exhibits nonlinear sensitivity to each stimulus. Despite great advances in the field of electronic skin (E-skin), the limitations of human skin have not previously been overcome. For the first time, the development of a stimulus-discriminating and linearly sensitive bimodal E-skin that can simultaneously detect and discriminate pressure and temperature stimuli in real time is reported. By introducing a novel device design and using a temperature-independent material, near-perfect stimulus discriminability is realized. In addition, the hierarchical contact behavior of the surface-wrinkled microstructure and the optimally reduced graphene oxide in the E-skin contribute to linear sensitivity to applied pressure/temperature stimuli over wide intensity range. The E-skin exhibits a linear and high pressure sensitivity of 0.7 kPa-1 up to 25 kPa. Its operation is also robust and exhibits fast response to pressure stimulus within 50 ms. In the case of temperature stimulus, the E-skin shows a linear and reproducible temperature coefficient of resistance of 0.83% K-1 in the temperature range 22-70 °C and fast response to temperature change within 100 ms. In addition, two types of stimuli are simultaneously detected and discriminated in real time by only impedance measurements.


Subject(s)
Pressure , Temperature , Wearable Electronic Devices , Biomimetic Materials , Elasticity , Graphite , Humans , Materials Testing , Skin
18.
ACS Appl Mater Interfaces ; 10(28): 24055-24063, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29938485

ABSTRACT

Poly(4-vinylphenol) (PVP) is a promising gate dielectric material for organic field-effect transistors (OFETs) and circuits fabricated on plastic substrates. Thermal cross-linking of PVP with a cross-linker, such as poly(melamine- co-formaldehyde) methylated (PMF), at a high temperature (above 170 °C) is widely considered an effective method to remove residual hydroxyl groups that induce polarization effects in the dielectric bulk. However, the threshold voltage shift in transfer characteristics is still observed for an OFET with a PVP-PMF dielectric when it is operated at a slow gate voltage sweep rate. The present study examines the cause of the undesired hysteresis phenomenon and suggests a route to enable a reliable operation. We systematically investigate the effect of the PVP-PMF weight ratio and their annealing temperature on the transfer characteristics of OFETs. We discover that the size of the hysteresis is closely related to the concentration of nonhydrogen-bonded hydroxyl groups in the dielectric bulk and this is controlled by the weight ratio. At a ratio of 0.5:1, a complete elimination of hysteresis was observed irrespective of the annealing temperature. We finally demonstrate a highly reliable operation of small-molecule-based OFETs fabricated on a plastic substrate at a low temperature.

19.
Sci Rep ; 8(1): 8980, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895859

ABSTRACT

The important concept of printable functional materials is about to cause a paradigm shift that we will be able to fabricate electronic devices by printing methods in air at room temperature. One of the promising applications of the printed electronics is a disposable electronic patch sensing system which can monitor the health conditions without any restraint. Operational amplifiers (OPAs) are an essential component for such sensing system, since an OPA enables a wide variety of signal processing. Here we demonstrate printed OPAs based on complementary organic semiconductor technology. They can be operated with a standard safe power source of 5 V with a minimal power consumption of 150 nW, and used as amplifiers, a variety of mathematical operators, signal converters, and oscillators. The printed micropower organic OPAs with the low voltage operation and the high versatility will open up the disposable electronic patch sensing system in near future.

20.
Sci Rep ; 8(1): 1669, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362403

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...