Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36295960

ABSTRACT

To realize portable gas sensor applications, it is necessary to develop hydrogen sulfide (H2S) microsensors capable of operating at lower voltages with high response, good selectivity and stability, and fast response and recovery times. A gas sensor with a high operating voltage (>5 V) is not suitable for portable applications because it demands additional circuitry, such as a charge pump circuit (supply voltage of common circuits is approximately 1.8−5 V). Among H2S microsensor components, that is, the substrate, sensing area, electrode, and micro-heater, the proper design of the micro-heater is particularly important, owing to the role of thermal energy in ensuring the efficient detection of H2S. This study proposes and develops tin (IV)-oxide (SnO2)-based H2S microsensors with different geometrically designed embedded micro-heaters. The proposed micro-heaters affect the operating temperature of the H2S sensors, and the micro-heater with a rectangular mesh pattern exhibits superior heating performance at a relatively low operating voltage (3−4 V) compared to those with line (5−7 V) and rectangular patterns (3−5 V). Moreover, utilizing a micro-heater with a rectangular mesh pattern, the fabricated SnO2-based H2S microsensor was driven at a low operating voltage and offered good detection capability at a low H2S concentration (0−10 ppm), with a quick response (<51 s) and recovery time (<101 s).

2.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685122

ABSTRACT

Shortwave infrared (SWIR) photodetectors are being actively researched for their application in autonomous vehicles, biometric sensors, and night vision. However, most of the SWIR photodetectors that have been studied so far are produced by complex semiconductor fabrication processes and have low sensitivity at room temperature because of thermal noise. In addition, the low wavelength band of the SWIR photodetectors currently used has a detrimental effect on the human eye. To overcome these disadvantages, we propose a solution-processed PbS SWIR photodetector that can minimize harmful effects on the human eye. In this study, we synthesized PbS quantum dots (QDs) that have high absorbance peaked at 1410 nm and fabricated SWIR photodetectors with a conductive polymer, poly(3-hexylthiophene) (P3HT), using the synthesized PbS QDs. The characteristics of the synthesized PbS QDs and the current-voltage (I-V) characteristics of the fabricated PbS SWIR photodetectors were measured. It was found that the maximum responsivity of the optimized PbS SWIR photodetector with P3HT was 2.26 times that of the PbS SWIR photodetector without P3HT. Moreover, due to the high hole mobility and an appropriate highest occupied molecular orbital level of P3HT, the former showed a lower operating voltage.

3.
Micromachines (Basel) ; 12(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34577705

ABSTRACT

Phosphorus (P) is one of the most important elements in the aquatic ecosystem, but its overuse causes eutrophication, which is a serious issue worldwide. In this study, we developed a miniaturized portable total phosphorus (TP) analysis device by integrating a TP sensor with a photocatalyst to pretreat analyte and optical components (LED and photodetector) to measure the absorbance of the blue-colored analyte for real-time TP monitoring and prevention of eutrophication. The size of the miniaturized portable TP analysis device is about 10.5 cm × 9.5 cm × 8 cm. Analyte-containing phosphorus was pretreated and colored blue by colorizing agent as a function of the phosphorus concentration. Absorbance of the blue-colored analyte was estimated by the LED and the photodetector such that the phosphorus concentration was quantitatively measured. This device can obtain a wide linear response range from 0.5 mg/L to 2.0 mg/L (R2 = 0.97381), and its performance can be improved by increasing the intensity of the UV light emitted from the LED array. Consequently, the performance of this miniaturized portable TP analysis device was found to be similar to that of a conventional TP analysis system; thus, it can be used in automated in situ TP analysis.

4.
Nano Converg ; 7(1): 28, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32803407

ABSTRACT

InGaAs-based photodetectors have been generally used for detection in the short-wave infrared (SWIR) region. However, the epitaxial process used to grow these materials is expensive; therefore, InGaAs-based photodetectors are limited to space exploration and military applications. Many researchers have expended considerable efforts to address the problem of SWIR photodetector development using lead sulfide (PbS) quantum dots (QDs). Along with their cost-efficient solution processability and flexible substrate compatibility, PbS QDs are highly interesting for the quantum-size-effect tunability of their bandgaps, spectral sensitivities, and wide absorption ranges. However, the performance of PbS QD-based SWIR photodetectors is limited owing to inefficient carrier transfer and low photo and thermal stabilities. In this study, a simple method is proposed to overcome these problems by incorporating CdS in PbS QD shells to provide efficient carrier transfer and enhance the long-term stability of SWIR photodetectors against oxidation. The SWIR photodetectors fabricated using thick-shell PbS/CdS QDs exhibited a high on/off (light/dark) ratio of 11.25 and a high detectivity of 4.0 × 1012 Jones, which represents a greater than 10 times improvement in these properties relative to those of PbS QDs. Moreover, the lifetimes of thick-shell PbS/CdS QD-based SWIR photodetectors were significantly improved owing to the self-passivation of QD surfaces.

5.
Sci Rep ; 9(1): 6357, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31015572

ABSTRACT

Quantum-dot (QD) light-emitting devices (QLEDs) have been attracting considerable attention owing to the unique properties of process, which can control the emission wavelength by controlling the particle size, narrow emission bandwidth, and high brightness. Although there have been rapid advances in terms of luminance and efficiency improvements, the long-term device stability is limited by the low chemical stability and photostability of the QDs against moisture and air. In this study, we report a simple method, which can for enhance the long-term stability of QLEDs against oxidation by inserting Al into the shells of CdSe/ZnS QDs. The Al coated on the ZnS shell of QDs act as a protective layer with Al2O3 owing to photo-oxidation, which can prevents the photodegradation of QD with prolonged irradiation and stabilize the device during a long-term operation. The QLEDs fabricated using CdSe/ZnS/Al QDs exhibited a maximum luminance of 57,580 cd/m2 and current efficiency of 5.8 cd/A, which are significantly more than 1.6 times greater than that of CdSe/ZnS QDs. Moreover, the lifetimes of the CdSe/ZnS/Al-QD-based QLEDs were significantly improved owing to the self-passivation at the QD surfaces.

6.
Materials (Basel) ; 11(7)2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29976901

ABSTRACT

In bulk heterojunction polymer solar cells (BHJ-PSCs), poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) is the most commonly used hole selective interlayer (HSIL). However, its acidity, hygroscopic nature, and the use of indium tin oxide (ITO) etching can degrade the overall photovoltaic performance and the air-stability of BHJ-PSCs. Solvent engineering is considered as a facile approach to overcome these issues. In this work, we engineered the HSIL using ethanol (ET) treated PEDOT:PSS to simultaneously enhance the photovoltaic performance properties and air-stability of the fabricated devices. We systematically investigated the influence of ET on the microstructural, morphological, interfacial characteristics of modified HSIL and photovoltaic characteristics of BHJ-PSCs. Compared with the BHJ-PSC with pristine PEDOT:PSS, a significant enhancement of power conversion efficiency (~17%) was witnessed for the BHJ-PSC with PEDOT:PSS-ET (v/v, 1:0.5). Consequently, the BHJ-PSC with PEDOT:PSS-ET (v/v, 1:0.5) as HSIL exhibited remarkably improved air-stability.

8.
Sensors (Basel) ; 17(4)2017 Apr 13.
Article in English | MEDLINE | ID: mdl-28406469

ABSTRACT

In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily.


Subject(s)
Nanostructures , Aluminum Oxide , C-Reactive Protein , Electrodes , Surface Plasmon Resonance
9.
Sci Rep ; 7: 45079, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338088

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...