Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Phytother Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743584

ABSTRACT

Echinacea purpurea (L.) Moench (EP), a medicinal plant native to North America, is now cultivated in various regions including Europe. With increasing popularity of Echinacea in Korea recently, a human clinical trial was conducted to evaluate immune-enhancing efficacy and safety of EP 60% ethanolic extract (EPE) in Koreans. Eighty volunteers were recruited for this randomized, double-blind, placebo-controlled clinical trial. They were randomly divided into two groups and given either a daily dose of 200 mg of EPE or a placebo. All participants underwent testing for Natural Killer (NK) cell cytotoxic activity, serum cytokine levels (IL-2, IL-6, IL-10, IL-12, IFN-γ, TNF-α), Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21), and Multidimensional Fatigue Scale (MFS) during this study to assess changes in outcomes. After 8 weeks of EPE consumption, a significant increase in NK cell cytotoxic activity compared to the placebo was observed. Additionally, serum cytokine levels of IL-2, IFN-γ, and TNF-α also significantly increased following EPE consumption. However, no significant changes were observed in WURSS-21 and MFS before and after EPE consumption. Throughout the 8-week study period, no adverse reactions were reported in relation to EPE consumption, and there were no clinically significant changes in diagnostic laboratory tests or vital signs in the EPE group. These results indicate that consumption of EPE could lead to immune improvement without any adverse effects. This clinical trial was the first to demonstrate beneficial effects of EPE consumption on immunity in Korean adults.

2.
Article in English | MEDLINE | ID: mdl-34504537

ABSTRACT

Periodontitis is a Gram-negative bacterial infectious disease. Numerous inflammatory cytokines, including interleukin-1ß (IL-1ß), regulate periodontitis pathophysiology and cause periodontal tissue destruction. In human gingival fibroblasts (HGFs), IL-1ß stimulates the production of matrix metalloproteinases (MMPs) and proinflammatory cytokines via various mechanisms. Several transcription factors, such as signal transducer and activator of transcription 3 (STAT-3), activator protein 1 (AP-1), and nuclear factor-κB (NF-κB), regulate gene expression. Mitogen-activated protein kinases (MAPKs) regulate these transcription factors. However, the MAPK/STAT-3 activation signal in HGFs is unknown. We investigated the potential inhibitory effects of the extract of Evodiae fructus (EFE), the dried, ripe fruit of Evodia rutaecarpa, on MMP and proinflammatory cytokine expression in IL-1ß-stimulated HGFs. EFE inhibited the expression of MMP-1, MMP-3, and proinflammatory cytokines (TNF-α, IL-6, and IL-8) in IL-1ß-stimulated HGFs through the inhibition of IL-1ß-induced MAPK/STAT-3 activation. Also, these results suggest that the EFE may be a useful for the bioactive material for oral care.

3.
Food Sci Biotechnol ; 30(2): 287-297, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33732519

ABSTRACT

Rhodiola rosea L. rhizome has been used as a traditional medicine to treat fatigue, depression, and cognitive dysfunction. We aimed to authenticate R. rosea L. rhizome using the DNA barcoding technique and to quantify its main compounds, total phenolics, total flavonoids, and antioxidant capacity, and then to investigate their neuroprotective effects. The sequences of internal transcribed spacer and trnH-psbA of R. rosea L. rhizomes showed a 99% identity with those of NCBI GenBank database according to BLAST searches. Analysis using reversed-phase HPLC revealed five main compounds in R. rosea L. rhizome. Rhodiola rosea L. rhizome and two bioactive compounds, salidroside and tyrosol, showed free radical scavenging activity. Rhodiola rosea L. rhizome and its identified compounds protected neuronal PC-12 cells against oxidative stress and showed moderate acetylcholinesterase inhibition. Taken together, these results suggest that R. rosea L. rhizomes with bioactives can be used as a functional ingredient with potential for neuroprotection. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1007/s10068-020-00868-7) contains supplementary material, which is available to authorized users.

4.
Saudi J Biol Sci ; 27(11): 2968-2971, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33100854

ABSTRACT

BACKGROUND: Amomum villosum Lour., (Zingiberaceae) an herbaceous plant in the ginger family, has been used to treat various diseases. In a single-blind, randomized, crossover study, we assessed the postprandial blood insulin and blood glucose responses in healthy subjects (n = 40) after the Amomum villosum water extract (AVE) (5 g/person) or a placebo (5 g/person) consumption. METHODS: During each treatment course, the healthy subject consumed a regular late afternoon meal, followed by fasting for 12 h, and arrived at the clinical study center the next morning. Blood insulin and blood glucose levels were assessed at 0, 30, 60, 90, and 120 min after AVE consumption. Between each treatment, the subjects accomplished one week of a washout period. RESULTS: The AVE intake demonstrated a significant (67.26%) decline in postprandial blood glucose AUC0-120 min (incremental area under the curve from 0 to 120 min) versus the placebo (P = 0.011). Furthermore, AVE reduced postprandial blood insulin AUC0-120 min by 59.95% compared to the placebo group (P < 0.003), supporting the blood glucose results. CONCLUSION: This study revealed that AVE consumption significantly reduced postprandial insulin and glucose levels in healthy individuals, due in part to inhibition of α-glucosidase, and glucose transport.

5.
Molecules ; 25(19)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036491

ABSTRACT

Amomi Fructus is widely used to treat digestive disorders, and Amomum villosum, A. villosum var. xanthioides, and A. longiligulare are permitted medicinally in national pharmacopeias. However, there are a variety of adulterants present in herbal markets owing to their morphological similarities to the genuine Amomum species. Forty-two Amomi Fructus samples from various origins were identified using internal transcribed spacer and chloroplast barcoding analyses, and then their chromatographic profiles were compared using chemometric analysis for chemotaxonomic monitoring. Among the Amomi Fructus samples, A. villosum, A. longiligulare, A. ghaticum, and A. microcarpum were confirmed as single Amomum species, whereas a mixture of either these Amomum species or with another Amomum species was observed in 15 samples. Chemotaxonomic monitoring results demonstrated that two medicinal Amomum samples, A. villosum and A. longiligulare, were not clearly distinguished from each other, but were apparently separated from other non-medicinal Amomum adulterants. A. ghaticum and A. microcarpum samples were also chemically different from other samples and formed their own species groups. Amomum species mixtures showed diverse variations of chemical correlations according to constituent Amomum species. Genetic authentication-based chemotaxonomic monitoring methods are helpful in classifying Amomi Fructus samples by their original species and to distinguish genuine Amomum species from the adulterants.


Subject(s)
Amomum/chemistry , Amomum/classification , Chromatography, High Pressure Liquid/methods , Phylogeny
6.
Arch Oral Biol ; 108: 104530, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31470141

ABSTRACT

OBJECTIVE: Periodontitis is an inflammatory disease of the supporting tissue around teeth commonly caused by gram-negative bacterial infections. Interleukin (IL)-1ß, a cytokine involved in host immune and inflammatory responses, is known to induce the activation of various intracellular signaling pathways. One of these signaling mechanisms involves the regulation of gene expression by activation of transcription factors (AP-1 and NF-κB). These transcription factors are controlled by mitogen-activated protein kinases (MAPKs), which increase cytokine and matrix metalloproteinase (MMP) expression. We examined the preventive effects of reversine, a 2,6-disubstituted purine derivative, on cytokine and MMP-3 expression in human gingival fibroblasts (HGFs) stimulated with IL-lß. STUDY DESIGN: Western blot analyses were performed to verify the activities of MAPK, p65, p50, and c-Jun and the expression of MMPs in IL-1ß-stimulated HGFs. Cytokine and MMP-3 expression in IL-1ß-stimulated HGFs was measured by real-time quantitative polymerase chain reaction. RESULTS: Reversine decreased the IL-1ß-induced expression of proinflammatory cytokines (IL-6 and IL-8) and MMP-3 in HGFs. Furthermore, the mechanism underlying the effects of reversine involved the suppression of IL-1ß-stimulated MAPK activation and AP-1 activation. CONCLUSION: Reversine inhibits IL-1ß-induced MMP and cytokine expression via inhibition of MAPK/AP-1 activation and ROS generation. Therefore, we suggest that reversine may be an effective therapeutic candidate for preventing periodontitis.


Subject(s)
Gingiva/metabolism , Interleukin-6 , Interleukin-8/metabolism , Matrix Metalloproteinase 3/metabolism , Morpholines , Purines , Fibroblasts/metabolism , Humans , Interleukin-1beta , Interleukin-6/metabolism , MAP Kinase Kinase 4/metabolism , Morpholines/pharmacology , NF-kappa B , Periodontitis/drug therapy , Periodontitis/metabolism , Purines/pharmacology , Reactive Oxygen Species , Transcription Factor AP-1
7.
Bioorg Chem ; 91: 103180, 2019 10.
Article in English | MEDLINE | ID: mdl-31416031

ABSTRACT

Novel cage-like indolizine-acenaphthene-pyridinone heterocyclic hybrids were synthesized in good yields through [bmim]Br mediated tandem 1,3-dipolar cycloaddition-annulation sequence. The anti-inflammatory activity of these hybrids was performed using carrageenan-induced hind paw oedema, croton oil-induced ear oedema and cotton pellet-induced granuloma models. Four of these cage-like heterocyclic hybrids viz. 4b, 4d, 4e and 4j showed substantial anti-inflammatory activities against acute and chronic inflammatory models and also showed significant inhibition of PGE2, TNF-α, and nitrite levels in carrageenan-induced hind paw oedema.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dinoprostone/antagonists & inhibitors , Drug Discovery , Edema/drug therapy , Granuloma/drug therapy , Heterocyclic Compounds/chemistry , Nitrites/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/chemistry , Carrageenan/toxicity , Edema/chemically induced , Edema/pathology , Granuloma/chemically induced , Granuloma/pathology , Mice , Rats , Rats, Wistar
8.
Biochem Biophys Res Commun ; 510(3): 409-415, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30711251

ABSTRACT

The lysosomal Ca2+ permeable channel TRPML1 (MCOLN1) plays key roles in lysosomal membrane trafficking, including the fusion of late endosomes to lysosomes and lysosomal exocytosis, both of which are essential for release of exosomes into the extracellular milieu. Multiple lines of evidence indicate that the contents of adipocyte-derived exosomes mediate diverse cellular responses, including adipogenic differentiation. In this study, we aimed to define the potential roles of TRPML1 in lysosomal membrane trafficking during adipogenesis and in exosomal release. In response to adipogenic stimuli, the endogenous TRPML1 expression in OP9 pre-adipocytes was increased in a time-dependent manner, and the acute deletion of TRPML1 reduced lipid synthesis and expression of differentiation-related marker genes. Notably, mature adipocyte-derived exosomes were found to be necessary for adipogenesis and were dependent on TRPML1-mediated lysosomal exocytosis. Taken together, our findings indicate that TRPML1 mediates diverse roles in adipocyte differentiation and exosomal release. Further, we propose that TRPML1 should be considered as a regulator of obesity-related diseases.


Subject(s)
Adipogenesis , Exocytosis , Exosomes/metabolism , Lysosomes/physiology , Transient Receptor Potential Channels/physiology , Animals , Cells, Cultured , Mice , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/biosynthesis
9.
Eur J Med Chem ; 152: 417-423, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29751235

ABSTRACT

Stereoselective synthesis of a small library of novel spiroheterocyclic hybrids including indolizine, oxindole, and substituted piperidine units has been accomplished in [bmim]Br using a [3 + 2] cycloaddition strategy in good yield and were tested for their anti-inflammatory activities. The effects of compounds (4a-o) against inflammation were studied using carrageenan-induced hind paw oedema, croton oil-induced ear oedema, and cotton pellet-induced granuloma models. Among the heterocyclic hybrids, compounds 4d, 4g, and 4o showed significant anti-inflammatory activities against acute and chronic inflammatory models. These compounds also showed significant inhibition of PGE2, TNF-α, and nitrite levels in carrageenan-induced hind paw oedema. Thus it is evident from our study that these novel spiroheterocyclic hybrids 4d, 4g, and 4o displayed significant anti-inflammatory effects that involve the reduction of PGE2, TNF-α, and nitrite levels.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Edema/drug therapy , Indoles/pharmacology , Indolizines/pharmacology , Nitrites/antagonists & inhibitors , Spiro Compounds/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan/administration & dosage , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Edema/chemically induced , Indoles/chemical synthesis , Indoles/chemistry , Indolizines/chemical synthesis , Indolizines/chemistry , Models, Molecular , Molecular Structure , Nitrites/metabolism , Oxindoles , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Stereoisomerism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
10.
Mol Med Rep ; 17(6): 8397-8402, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29658601

ABSTRACT

Casein kinase 2 (CK2) is a serine/threonine protein kinase that has been considered to represent an important factor in mammary tumorigenesis. Increased expression of matrix metalloproteinase­9 (MMP­9) via nuclear factor­κB (NF­κB) activation has been demonstrated to promote breast cancer cell invasion. In the present study, the involvement of CK2 in protein kinase C (PKC) induced cell invasion in MCF­7 breast cancer cells was investigated as well as the underlying molecular mechanisms. The mRNA and protein levels of MMP­9 in MCF­7 cells were investigated using reverse transcription­quantitative polymerase chain reaction, western blot analyses and a zymography assay. Cell invasiveness was investigated using a Matrigel invasion assay, and it was revealed that small interfering RNA specific for CK2 suppressed PKC induced cell invasion by regulating MMP­9 expression via activation of the p38 kinase/c­Jun N­terminal kinase/NF­κB pathway. In addition, it was demonstrated that CK2 inhibitors [apigenin (20 µM), emodin (20 µM) or 2­dimethylamino­4,5,6,7­tetrabromo­1H­benzimidazole (2 µM)] suppressed PKC induced cell invasion and MMP­9 expression. The results of the present study suggested that CK2 is an important factor involved in the induction of MCF­7 breast cancer cell invasion by PKC. Therefore, CK2 may represent novel candidates for therapy intended to inhibit invasion in breast cancer.


Subject(s)
Casein Kinase II/genetics , Gene Silencing , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Kinase C/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/genetics , Gene Expression , Humans , MCF-7 Cells , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RNA Interference
11.
Exp Dermatol ; 27(3): 298-301, 2018 03.
Article in English | MEDLINE | ID: mdl-29341262

ABSTRACT

UVB has been shown to stimulate the generation of reactive oxygen species (ROS), which subsequently results in the activation of various intracellular signalling pathways and transcription factors (AP-1, NF-κB). These transcription factors are regulated by MAPKs, which increase cytokine and MMP expression. We examined the preventive effects of reversine on MMP-1 and MMP-3 expressions in NHEKs and NHDFs exposed to UVB irradiation. Also, we confirmed that reversine decreased pro-inflammatory cytokine expression in NHEKs. The mechanism underlying the MMP inhibitory effects of reversine occurred via the suppression of UVB-induced ROS generation and MAPK/AP-1 activation. Therefore, reversine is an effective therapeutic candidate for preventing skin photoageing.


Subject(s)
Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase Inhibitors/pharmacology , Morpholines/pharmacology , Purines/pharmacology , Cytokines/genetics , Fibroblasts , Gene Expression/drug effects , Humans , Keratinocytes , Mitogen-Activated Protein Kinases/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/radiation effects , Transcription Factor AP-1/metabolism , Ultraviolet Rays
12.
Chin J Integr Med ; 24(6): 436-441, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29247342

ABSTRACT

OBJECTIVE: To examinie the synergistic effects of Banxia Xiexin Decoction (, Known as Banhasasim-tang in Korean) extract (BXDE) on cisplatin-induced cytotoxicity in the A549 human lung cancer cell lines. METHODS: A549 cells were treated with varying concentrations (50-200 µg/mL) of cisplatin and BXDE alone or in combination for 96 h. We used 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay and flow cytometry to analyze cell viability and apoptosis, respectively. RESULTS: The exposure of cells to cisplatin and BXDE alone or in combination decreased cell viability dose- and time-dependently (P<0.05), which was found to be mediated by the apoptotic pathway as confirmed by the increase in the annexin V+/propidium iodide- stained cell population and a ladder pattern of discontinuous DNA fragments. Furthermore, the apoptosis was inhibited by the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-FMK). CONCLUSIONS: BXDE significantly potentiated apoptotic effects of cisplatin in A549 cells. Moreover, apoptosis induced by BXDE might be the pivotal mechanism mediating its chemopreventative action against cancer.


Subject(s)
Apoptosis/drug effects , Cisplatin/pharmacology , Plant Extracts/pharmacology , A549 Cells , Apoptosis Regulatory Proteins/metabolism , Caspase Inhibitors/pharmacology , DNA Fragmentation/drug effects , Humans
13.
J Breast Cancer ; 20(3): 234-239, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28970848

ABSTRACT

PURPOSE: Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. METHODS: The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. RESULTS: CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. CONCLUSION: The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.

14.
Oncol Lett ; 14(3): 3594-3600, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28927117

ABSTRACT

Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

15.
Exp Ther Med ; 14(1): 410-416, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28672947

ABSTRACT

The constituents of Peucedanum japonicum Thunb. (PJ) exhibit biological and pharmacological activities, including anti-obesity, anti-oxidant and anti-allergic activities. The aim of the present study was to examine in vitro effects of PJ in RANKL-induced signaling pathways, which determine osteoclast differentiation. PJ ethanol extract (PEE) exhibited anti-osteoporotic activity by disrupting the phospholipase C (PLC)-Ca2+-c-Fos/cAMP response element-binding protein (CREB)-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway during osteoclastogenesis. Murine bone marrow-derived macrophages (BMMs) were cultured and used to determine the effects of PJ in the receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis. The effects of PEE in the RANKL-mediated signaling cascade were evaluated using a standard in vitro osteoclastogenesis system. PEE treatment of BMMs significantly reduced the number of RANKL-mediated tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (P<0.05 for 5 and 10 µg/ml PEE, P<0.01 for 25 and 50 µg/ml PEE), without cytotoxic effects. Furthermore, the expression of differentiation-related marker genes, including TRAP, Oscar, Cathepsin K, dendrocyte expressed seven transmembrane protein, ATPase H+ Transporting V0 Subunit D2 and NFATc1, were markedly suppressed. PEE induced a transient increase in free cytoplasmic Ca2+ ([Ca2+]i) mobilization via voltage-gated Ca2+ channels and PLC-sensitive pathways. Transient [Ca2+]i increase consequently resulted in the suppression of c-Fos, CREB and NFATc1 activities. These findings highlight the potential use of PJ in treating bone disorders caused by osteoclast overgrowth.

16.
J Cell Mol Med ; 21(11): 3113-3116, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28557373

ABSTRACT

The biological function of NADPH oxidase (NOX) is the generation of reactive oxygen species (ROS). ROS, primarily arising from oxidative cell metabolism, play a major role in both chronological ageing and photoageing. ROS in extrinsic and intrinsic skin ageing may be assumed to induce the expression of matrix metalloproteinases. NADPH oxidase is closely linked with phosphatidylinositol 3-OH kinase (PI3K) signalling. Protein kinase C (PKC), a downstream molecule of PI3K, is essential for superoxide generation by NADPH oxidase. However, the effect of PTEN and NOX4 in replicative-aged MMPs expression has not been determined. In this study, we confirmed that inhibition of the PI3K signalling pathway by PTEN gene transfer abolished the NOX-4 and MMP-1 expression. Also, NOX-4 down-expression of replicative-aged skin cells abolished the MMP-1 expression and ROS generation. These results suggest that increase of MMP-1 expression by replicative-induced ROS is related to the change in the PTEN and NOX expression.


Subject(s)
Cellular Senescence/genetics , Fibroblasts/metabolism , Matrix Metalloproteinase 1/genetics , NADPH Oxidase 4/genetics , PTEN Phosphohydrolase/genetics , Reactive Oxygen Species/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Cells, Cultured , Dermis/cytology , Dermis/metabolism , Fibroblasts/cytology , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Matrix Metalloproteinase 1/metabolism , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Signal Transduction , Transfection
18.
BMC Complement Altern Med ; 17(1): 164, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28335757

ABSTRACT

BACKGROUND: Sophorae Flos (SF) is a composite of flowers and buds of Styphnolobium japonicum (L.) Schott and has been used in traditional Korean and Chinese medicine for the treatment of hemostasis and inflammation. Previous studies reported that SF possesses anti-obesity properties, as well as anti-allergic, anti-proliferative, and anti-inflammatory activities. However, the effect of SF in bone resorption has not been studies. In this study, we examined the potential of SF extract (SFE) to inhibit receptor activator of NF-κB ligand (RANKL) -induced osteoclast differentiation in cultured mouse-derived bone marrow macrophages (BMMs). METHODS: BMMs, that act as osteoclast precursors, were cultured with M-CSF (50 ng/ml) and RANKL (100 ng/ml) for 4 days to generate osteoclasts. Osteoclast differentiation was measured by tartrate-resistant acidic phosphatase (TRAP) staining and the TRAP solution assay. Osteoclast differentiation marker genes were analyzed by the quantitative real-time polymerase chain reaction analysis. RANKLs signaling pathways were confirmed through western blotting. RESULTS: SFE significantly decreased osteoclast differentiation in a dose-dependent manner. SFE inhibited RANKL-induced osteoclastogenesis by suppressing NF-κB activation. By contrast, SFE did not affect phospholipase C gamma 2 or subsequent cAMP response element binding activation. SFE inhibited the RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). CONCLUSIONS: SFE attenuated the RANKL-mediated induction of NF-κB through inhibition of IκBα phosphorylation, which contributed to inhibiting of RANKL-induced osteoclast differentiation through downregulation of NFATc1.


Subject(s)
Bone Marrow Cells/drug effects , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , RANK Ligand/metabolism , Sophora/chemistry , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cells, Cultured , Down-Regulation/drug effects , Flowers/chemistry , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/cytology , Osteoclasts/metabolism , Signal Transduction/drug effects
19.
Oncol Lett ; 13(1): 243-249, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28123548

ABSTRACT

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis.

20.
Saudi J Biol Sci ; 24(8): 1933-1938, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29551947

ABSTRACT

Ononitol monohydrate (OM) was isolated from Cassia tora L. leaves. The anti-inflammatory and analgesic activities of OM have been examined in male Wistar rats and mice. The efficacy of OM against inflammation was studied by using carrageenan-induced paw oedema, croton oil-induced ear oedema, acetic acid-induced vascular permeability, cotton pellet-induced granuloma and adjuvant-induced arthritis. The analgesic activity of OM was assessed using the acetic acid-induced abdominal constriction response, formalin-induced paw licking response and the hot-plate test. In acute type inflammation models, maximum inhibitions of 50.69 and 61.06% (P < .05) were noted with 20 mg/kg of OM in carrageenan-induced hind paw oedema and croton oil-induced ear oedema, respectively. Treatment of OM (20 mg/kg) meaningfully (P < .05) reduced the granuloma tissue formation by cotton pellet study at a rate of 36.25%. OM (20 mg/kg) inhibited 53.64% of paw thickness in adjuvant-induced arthritis model. OM has also been produced significant (P < .05) analgesic activity in acetic acid-induced abdominal constriction response, formalin-induced paw licking response and in hot-plate test suggesting its peripheral and central analgesic potential. The outcomes of the present study proposed that OM influenced on the anti-inflammatory and analgesic activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...