Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203129

ABSTRACT

This study demonstrates how to generate a three-dimensional (3D) body model through a small number of images and derive body values similar to the actual values using generated 3D body data. In this study, a 3D body model that can be used for body type diagnosis was developed using two full-body pictures of the front and side taken with a mobile phone. For data training, 400 3D body datasets (male: 200, female: 200) provided by Size Korea were used, and four models, i.e., 3D recurrent reconstruction neural network, point cloud generative adversarial network, skinned multi-person linear model, and pixel-aligned impact function for high-resolution 3D human digitization, were used. The models proposed in this study were analyzed and compared. A total of 10 men and women were analyzed, and their corresponding 3D models were verified by comparing 3D body data derived from 2D image inputs with those obtained using a body scanner. The model was verified through the difference between 3D data derived from the 2D image and those derived using an actual body scanner. Unlike the 3D generation models that could not be used to derive the body values in this study, the proposed model was successfully used to derive various body values, indicating that this model can be implemented to identify various body types and monitor obesity in the future.


Subject(s)
Cell Phone , Deep Learning , Humans , Female , Male , Somatotypes , Linear Models , Obesity/diagnostic imaging
2.
Sensors (Basel) ; 22(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36146409

ABSTRACT

Gamma radiation has been classified by the International Agency for Research on Cancer (IARC) as a carcinogenic agent with sufficient evidence in humans. Previous studies show that some weather data are cross-correlated with gamma exposure rates; hence, we hypothesize that the gamma exposure rate could be predicted with certain weather data. In this study, we collected various weather and radiation data from an automatic weather system (AWS) and environmental radiation monitoring system (ERMS) during a specific period and trained and tested two time-series learning algorithms-namely, long short-term memory (LSTM) and light gradient boosting machine (LightGBM)-with two preprocessing methods, namely, standardization and normalization. The experimental results illustrate that standardization is superior to normalization for data preprocessing with smaller deviations, and LightGBM outperforms LSTM in terms of prediction accuracy and running time. The prediction capability of LightGBM makes it possible to determine whether the increase in the gamma exposure rate is caused by a change in the weather or an actual gamma ray for environmental radiation monitoring.


Subject(s)
Radiation Monitoring , Algorithms , Databases, Factual , Gamma Rays , Humans , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...