Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631197

ABSTRACT

Rose (Rosa hybrida) is a major flower crop worldwide and has long been loved for its variety of colors and scents. Roses are mainly used for gardening or cutting flowers and are also used as raw materials for perfumes, cosmetics, and food. Essential oils, which are extracted from the flowers of plants, including roses, have various scents, and the essential oil market has been growing steadily owing to the growing awareness of the benefits of natural and organic products. Therefore, it is necessary to develop a system that stably supplies raw materials with uniform ingredients in line with the continuous increase in demand. In this study, conditions for the efficient induction of callus were established from the petals of the rose breeding line 15R-12-2, which has a strong scent developed by the National Institute of Horticultural and Herbal Science, Rural Development Administration. The highest callus induction rate (65%) was observed when the petals of the fully open flower (FOF) were placed on the SH11DP medium so that the abaxial surface was in contact with the medium. In addition, the VOCs contained in the petals of 15R-12-2 and the petal-derived callus were analyzed by HS-SPME-GC-MS. Thirty components, including esters and alcohols, were detected in the petal-derived callus. Among them, 2-ethylhexan-1-ol, which showed 59.01% relative content when extracted with hexane as a solvent, was the same component as detected in petals. Therefore, petal-derived callus is expected to be of high industrial value and can be suggested as an alternative pathway to obtaining VOCs.

2.
Adv Sci (Weinh) ; 7(17): 2001358, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995129

ABSTRACT

Stretchable lithium batteries have attracted considerable attention as components in future electronic devices, such as wearable devices, sensors, and body-attachment healthcare devices. However, several challenges still exist in the bid to obtain excellent electrochemical properties for stretchable batteries. Here, a unique stretchable lithium full-cell battery is designed using 1D nanofiber active materials, stretchable gel polymer electrolyte, and wrinkle structure electrodes. A SnO2/C nanofiber anode and a LiFePO4/C nanofiber cathode introduce meso- and micropores for lithium-ion diffusion and electrolyte penetration. The stretchable full-cell consists of an elastic poly(dimethylsiloxane) (PDMS) wrapping film, SnO2/C and LiFePO4/C nanofiber electrodes with a wrinkle structure fixed on the PDMS wrapping film by an adhesive polymer, and a gel polymer electrolyte. The specific capacity of the stretchable full-battery is maintained at 128.3 mAh g-1 (capacity retention of 92%) even after a 30% strain, as compared with 136.8 mAh g-1 before strain. The energy densities are 458.8 Wh kg-1 in the released state and 423.4 Wh kg-1 in the stretched state (based on the electrode), respectively. The high capacity and stability in the stretched state demonstrate the potential of the stretchable battery to overcome its limitations.

3.
Nanomaterials (Basel) ; 9(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703446

ABSTRACT

Separators are a vital component to ensure the safety of lithium-ion batteries. However, the commercial separators employed in lithium ion batteries are inefficient due to their low porosity. In the present study, a simple electrospinning technique is adopted to prepare highly porous polyacrylonitrile (PAN)-based membranes with a higher concentration of lithium aluminum titanium phosphate (LATP) ceramic particles, as a viable alternative to the commercialized separators used in lithium ion batteries. The effect of the LATP particles on the morphology of the porous membranes is demonstrated through Field emission scattering electron microscopy. X-ray diffraction and Fourier transform infrared spectra studies suitably demonstrate the mixing of PAN and LATP particles in the polymer matrix. PAN with 30 wt% LATP (P-L30) exhibits an enhanced porosity of 90% and is more thermally stable, with the highest electrolyte uptake among all the prepared membranes. Due to better electrolyte uptake, the P-L30 membrane demonstrates an improved ionic conductivity of 1.7 mS/cm. A coin cell prepared with a P-L30 membrane and a LiFePO4 cathode demonstrates the highest discharge capacity of 158 mAh/g at 0.5 C-rate. The coin cell with the P-L30 membrane also displays good cycling stability by retaining 97.5% of the initial discharge capacity after 200 cycles of charging and discharging at a 1C rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...