Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(3): e0310223, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38289090

ABSTRACT

Tomatoes are readily available and affordable vegetables that offer a range of health benefits due to their bioactive molecules, such as antioxidants and antimicrobials. In contrast to the widely recognized antioxidant properties of tomatoes, their antimicrobial properties remain largely unexplored. Here, we present our findings on the antimicrobial properties of tomato juice and peptides, namely, tomato-derived antimicrobial peptides (tdAMPs), in relation to their effectiveness against typhoidal Salmonella. Our research has revealed that tomato juice demonstrates significant antimicrobial properties against Salmonella Typhi, a pathogen that specifically affects humans and is responsible for causing typhoid fever. By employing computational analysis of the tomato genome sequence, conducting molecular dynamics simulation, and performing functional analyses, we have successfully identified two tdAMPs, namely, tdAMP-1 and tdAMP-2. These tdAMPs have demonstrated potent antimicrobial properties by effectively disrupting bacterial membranes. The efficacy of tdAMP-2 is shown to be more effective than tdAMP-1. The efficacy of tdAMP-1 and tdAMP-2 has been demonstrated against drug-resistant S. Typhi, as well as hyper-capsular S. Typhi variants that possess hypervirulent characteristics, which are presently circulating in countries with endemicity. Tomato juice, along with the two tdAMPs, has demonstrated effectiveness against uropathogenic Escherichia coli as well. This underscores their potential as viable agents in combating certain Gram-negative pathogens. This study provides valuable insights into the development of effective and sustainable public health strategies that utilize tomato and its derivatives as lifestyle interventions.IMPORTANCEIn this study, we investigate the antimicrobial properties of tomato juice, the most widely consumed affordable vegetables, as well as tomato-derived antimicrobial peptides, in relation to their effectiveness against foodborne pathogens with an emphasis on Salmonella Typhi, a deadly human-specific pathogen.


Subject(s)
Anti-Infective Agents , Solanum lycopersicum , Typhoid Fever , Humans , Typhoid Fever/microbiology , Salmonella/genetics , Salmonella typhi/genetics , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Peptides/pharmacology , Antimicrobial Peptides
2.
PLoS One ; 16(9): e0257744, 2021.
Article in English | MEDLINE | ID: mdl-34582469

ABSTRACT

Sepsis is a syndromic response to infections and is becoming an emerging threat to the public health sector, particularly in developing countries. Salmonella Typhi (S. Typhi), the cause of typhoid fever, is one primary cause of pediatric sepsis in typhoid endemic areas. Extensively drug-resistant (XDR) S. Typhi is more common among pediatric patients, which is responsible for over 90% of the reported XDR typhoid cases, but the majority of antibiotic resistance studies available have been carried out using S. Typhi isolates from adult patients. Here, we characterized antibiotic-resistance profiles of XDR S. Typhi isolates from a medium size cohort of pediatric typhoid patients (n = 45, 68.89% male and 31.11% female) and determined antibiotic-resistance-related gene signatures associated with common treatment options to typhoid fever patients of 18 XDR S. Typhi representing all 45 isolates. Their ages were 1-13 years old: toddlers aging 1-2 years old (n = 9, 20%), pre-schoolers aging 3-5 years old (n = 17, 37.78%), school-age children aging 6-12 years old (n = 17, 37.78%), and adolescents aging 13-18 years old (n = 2, 4.44%). Through analyzing blaTEM1, dhfR7, sul1, and catA1genes for multidrug-resistance, qnrS, gyrA, gyrB, parC, and parE for fluoroquinolone-resistance, blaCTX-M-15 for XDR, and macAB and acrAB efflux pump system-associated genes, we showed the phenotype of the XDR S. Typhi isolates matches with their genotypes featured by the acquisitions of the genes blaTEM1, dhfR7, sul1, catA1, qnrS, and blaCTX-M-15 and a point mutation on gyrA. This study informs the molecular basis of antibiotic-resistance among recent S. Typhi isolates from pediatric septicemia patients, therefore providing insights into the development of molecular detection methods and treatment strategies for XDR S. Typhi.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Salmonella typhi/isolation & purification , Sepsis/microbiology , Typhoid Fever/diagnosis , Adolescent , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Point Mutation , Salmonella typhi/drug effects , Salmonella typhi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...