Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37447145

ABSTRACT

(1) Background: The forest of Pinus sylvestris var. mongolica is an important semi-arid ecosystem in Hulunbuir sandy land that plays a key role in the carbon cycle and wind erosion control. It is crucial to explore the main factors affecting the radial growth of trees of P. sylvestris var. mongolica. (2) Methods: The study established the tree-ring chronology of P. sylvestris var. mongolica and analyzed the relationships among the radial growth, competition index, and climate variables using correlation analysis and a linear mixed effect model to explore the influence of competition and climate on radial growth of P. sylvestris var. mongolica. (3) Results: The results indicated that tree growth is mainly affected by the maximum average temperature (Tmax) and precipitation in June and July of the current year and that tree growth significantly decreased with increasing competition pressure. Analysis of the linear mixed effect model showed that tree age, competition intensity, self-calibrating Palmer drought severity index (scPDSI) from May to July, and vapor pressure deficit (VPD) have a significant impact on radial growth. (4) Conclusions: The competition plays a dominant role in radial growth of P. sylvestris var. mongolica compared to climate factors. This study helps to understand the growth mechanism of P. sylvestris var. mongolica forests under climate change and provides a scientific basis for effective management of semi-arid forests.

2.
Sci Total Environ ; 830: 154742, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35341836

ABSTRACT

Global climate change and the increase in the frequency and intensity of drought have led to widespread forest decline and tree mortality. Studying the resilience components of tree growth to drought, including resistance (Rt), recovery (Rc), and resilience (Rs) and the influencing factors, helps assess forests' production and ecological stability under a changing climate. This study analyzed the responses of three resilience components of natural Mongolian pine (Pinus sylvestris var. mongolica) to drought events by examining individual-tree characteristics in two sites of Hulunbuir using the linear mixed effect model. The result showed that drought severity, diameter at breast height (dbh), pre-drought growth, and growth variability prior to drought had significant effects on the three resilience components of Mongolian pine growth. Specifically, as drought severity, dbh and growth variability increased, the Rt and Rs decreased, but Rc increased, showing a trade-off relationship with Rt. However, the Rt, Rc, and Rs decreased with pre-drought growth. Inter-tree competition and tree age also significantly impacted two resilience components. Besides, the interaction term between tree competition and tree age negatively affects Rt and Rs but positively affects Rc. Our findings highlight the influence of drought severity and individual-tree characteristics on drought resilience components, which can serve the adaptive management of natural Mongolian pine forests in the future.


Subject(s)
Pinus sylvestris , Pinus , Droughts , Forests , Trees
3.
Sci Total Environ ; 821: 153378, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35085641

ABSTRACT

As a medicinal plant, Artemisia annua L. is the main source of artemisinin in malaria drugs, but the lack of understanding of its distribution, environmental conditions and protection status limits the mass acquisition of artemisinin. Therefore, we used the ensemble forecast method to model the current and future global distribution areas of A. annua, evaluated the changes in suitable distribution areas on each continent under impacts of human activities and climate change, and its protection status on each continent in the corresponding period. The results showed that the main distribution areas of A. annua were concentrated in mid-latitudes in western and central Europe, southeastern Asia, southeastern North America and southeastern South America. Under the current climate scenario, human modifications have greatly reduced the suitable distribution area of A. annua, which was projected to expand inland with climate change and human socioeconomic impacts of CMIP6 in the future, but the effects of increasing temperature were different in different periods. Among all continents, the suitable distribution area in Europe was the most affected. However, at present and in the future, A. annua needs high priority protection on all continents. Asia and Europe have slightly better protection status scores than other continents, but the protection status scores of all continents are still very low. Our findings can be useful to guide development of protective measures for medicinal plants such as A. annua to further support drug production and disease treatment.


Subject(s)
Anthropogenic Effects , Artemisia annua , Climate , Conservation of Natural Resources , Plants, Medicinal , Asia , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...