Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745332

ABSTRACT

Mutations in the GBA1 gene have been identified as a prevalent genetic risk factor for Parkinson's disease (PD). GBA1 mutations impair enzymatic activity, leading to lysosomal dysfunction and elevated levels of α-synuclein (α-syn). While most research has primarily focused on GBA1's role in promoting synucleinopathy, emerging evidence suggests that neuroinflammation may be a key pathogenic alteration caused by GBA1 deficiency. To examine the molecular mechanism underlying GBA1 deficiency-mediated neuroinflammation, we generated Gba1 E326K knock-in (KI) mice using the CRISPR/Cas9 technology, which is linked to an increased risk of PD and dementia with Lewy bodies (DLB). In the ventral midbrain and hippocampus of 24-month-old Gba1 E326K KI mice, we found a moderate decline in GBA1 enzymatic activity, a buildup of glucosylceramide, and an increase in microglia density. Furthermore, we observed increased levels of pro-inflammatory cytokines and formation of reactive astrocytes in primary microglia and astrocytes, respectively, cultured from Gba1 E326K KI mice following treatment with pathologic α-syn preformed fibrils (PFF). Additionally, the gut inoculation of α-syn PFF in Gba1 E326K KI mice significantly enhanced the accumulation of Lewy bodies in the dentate gyrus of the hippocampus, accompanied by aggravated neuroinflammation and exacerbated non-motor symptoms. This research significantly enhances our understanding of the Gba1 E326K mutation's involvement in neuroinflammation and the cell-to-cell transmission of pathogenic α-syn in the brain, thereby opening new therapeutic avenues.

2.
ChemistryOpen ; 12(3): e202200263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36855332

ABSTRACT

Zintl compounds are promising thermoelectric materials for power generation as their electronic and thermal transport properties can be simultaneously engineered with anion/cation alloying. Recently, a peak thermoelectric figure-of-merit, zT, of 1.4 was achieved in a (Yb0.9 Mg0.1 )Cd1.2 Mg0.4 Zn0.4 Sb2 Zintl phase at 700 K. Although the effects of alloying Zn in lattice thermal conductivity had been studied thoroughly, how the Zn alloying affects its electronic transport properties has not yet been fully investigated. This study evaluates how the Zn alloying at Cd sites alters the band parameters of (Yb0.9 Mg0.1 )Cd1.6-x Mg0.4 Znx Sb2 (x=0-0.6) using the Single Parabolic Band model at 700 K. The Zn alloying increased the density-of-states effective mass (md * ) from 0.87 to 0.97 m0 . Among Zn-alloyed samples, the md * of the x=0.4 sample was the lowest (0.93 m0 ). The Zn alloying decreased the non-degenerate mobility (µ0 ) from 71 to 57 cm2 s-1 V-1 . Regardless of Zn alloying content, the µ0 of the Zn-alloyed samples were similar (∼57 cm2 s-1 V-1 ). Consequently, the x=0.4 with the highest zT exhibited the lowest weighted mobility (µW ). The lowest µW represents the lowest theoretical electronic transport properties among other x. The highest zT at x=0.4 despite the lowest µW was explained with a significant lattice thermal conductivity reduction achieved with Zn alloying with x=0.4, which outweighed the deteriorated electronic transport properties also due to the alloying.

4.
Neuron ; 109(23): 3758-3774.e11, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34644545

ABSTRACT

Impairment in glucocerebrosidase (GCase) is strongly associated with the development of Parkinson's disease (PD), yet the regulators responsible for its impairment remain elusive. In this paper, we identify the E3 ligase Thyroid Hormone Receptor Interacting Protein 12 (TRIP12) as a key regulator of GCase. TRIP12 interacts with and ubiquitinates GCase at lysine 293 to control its degradation via ubiquitin proteasomal degradation. Ubiquitinated GCase by TRIP12 leads to its functional impairment through premature degradation and subsequent accumulation of α-synuclein. TRIP12 overexpression causes mitochondrial dysfunction, which is ameliorated by GCase overexpression. Further, conditional TRIP12 knockout in vitro and knockdown in vivo promotes the expression of GCase, which blocks α-synuclein preformed fibrils (α-syn PFFs)-provoked dopaminergic neurodegeneration. Moreover, TRIP12 accumulates in human PD brain and α-synuclein-based mouse models. The identification of TRIP12 as a regulator of GCase provides a new perspective on the molecular mechanisms underlying dysfunctional GCase-driven neurodegeneration in PD.


Subject(s)
Carrier Proteins/metabolism , Glucosylceramidase , Parkinson Disease , Ubiquitin-Protein Ligases/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mice , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitination , alpha-Synuclein/metabolism
5.
J Med Chem ; 64(20): 15091-15110, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34583507

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects movement. The nonreceptor tyrosine kinase c-Abl has shown a potential role in the progression of PD. As such, c-Abl inhibition is a promising candidate for neuroprotection in PD and α-synucleinopathies. Compound 5 is a newly synthesized blood-brain barrier penetrant c-Abl inhibitor with higher efficacy than existing inhibitors. The objective of the current study was to demonstrate the neuroprotective effects of compound 5 on the α-synuclein preformed fibril (α-syn PFF) mouse model of PD. Compound 5 significantly reduced neurotoxicity, activation of c-Abl, and Lewy body pathology caused by α-syn PFF in cortical neurons. Additionally, compound 5 markedly ameliorated the loss of dopaminergic neurons, c-Abl activation, Lewy body pathology, neuroinflammatory responses, and behavioral deficits induced by α-syn PFF injection in vivo. Taken together, these results suggest that compound 5 could be a pharmaceutical agent to prevent the progression of PD and α-synucleinopathies.


Subject(s)
Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Neuroprotective Agents/chemistry , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Structure-Activity Relationship
6.
J Proteome Res ; 20(7): 3428-3443, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34061533

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Disease Models, Animal , Dopamine , Humans , Mice , Mice, Transgenic , Parkinson Disease/genetics , alpha-Synuclein/genetics
7.
Acta Neuropathol Commun ; 9(1): 78, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902708

ABSTRACT

Alzheimer's disease (AD) is the most common cause of age-related dementia. Increasing evidence suggests that neuroinflammation mediated by microglia and astrocytes contributes to disease progression and severity in AD and other neurodegenerative disorders. During AD progression, resident microglia undergo proinflammatory activation, resulting in an increased capacity to convert resting astrocytes to reactive astrocytes. Therefore, microglia are a major therapeutic target for AD and blocking microglia-astrocyte activation could limit neurodegeneration in AD. Here we report that NLY01, an engineered exedin-4, glucagon-like peptide-1 receptor (GLP-1R) agonist, selectively blocks ß-amyloid (Aß)-induced activation of microglia through GLP-1R activation and inhibits the formation of reactive astrocytes as well as preserves neurons in AD models. In two transgenic AD mouse models (5xFAD and 3xTg-AD), repeated subcutaneous administration of NLY01 blocked microglia-mediated reactive astrocyte conversion and preserved neuronal viability, resulting in improved spatial learning and memory. Our study indicates that the GLP-1 pathway plays a critical role in microglia-reactive astrocyte associated neuroinflammation in AD and the effects of NLY01 are primarily mediated through a direct action on Aß-induced GLP-1R+ microglia, contributing to the inhibition of astrocyte reactivity. These results show that targeting upregulated GLP-1R in microglia is a viable therapy for AD and other neurodegenerative disorders.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Microglia/metabolism , Neuroprotection/physiology , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/toxicity , Animals , Astrocytes/drug effects , Cells, Cultured , Exenatide/administration & dosage , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Transgenic , Microglia/drug effects , Neuroprotection/drug effects , Neuroprotective Agents/administration & dosage , Peptide Fragments/toxicity
8.
Nutrients ; 14(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35010975

ABSTRACT

Hepatic fibrosis results from chronic liver damage and is characterized by excessive accumulation of extracellular matrix (ECM). In this study, we showed that dendropanoxide (DPX), isolated from Dendropanax morbifera, had anti-fibrotic effects on hepatic fibrosis by inhibiting hepatic stellate cell (HSC) activation. DPX suppressed mRNA and protein expression of α-SMA, fibronectin, and collagen in activated HSCs. Moreover, DPX (40 mg/kg) treatment significantly lowered levels of liver injury markers (aspartate aminotransferase and alanine transaminase), expression of fibrotic markers, and deposition of ECM in a carbon tetrachloride-induced mouse model. Anti-fibrotic effects of DPX were comparable to those of silymarin in a hepatic fibrosis mouse model. As a possible mechanism of anti-fibrotic effects, we showed that DPX inhibited autophagosome formation (LC3B-II) and degradation of p62, which have important roles in HSC activation. These findings suggest that DPX inhibits HSC activation by inhibiting autophagy and can be utilized in hepatic fibrosis therapy.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Cirrhosis/prevention & control , Triterpenes/pharmacology , Animals , Araliaceae/chemistry , Carbon Tetrachloride Poisoning , Cell Line , Dose-Response Relationship, Drug , Humans , Liver Cirrhosis/chemically induced , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Plant Components, Aerial/chemistry , Protective Agents/chemistry , Protective Agents/pharmacology , Random Allocation , Silymarin/pharmacology , Triterpenes/administration & dosage , Triterpenes/chemistry
9.
Cells ; 9(1)2019 12 20.
Article in English | MEDLINE | ID: mdl-31861943

ABSTRACT

Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (-)-catechin-7-O-ß-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmusdavidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.


Subject(s)
Catechin/administration & dosage , Hepatic Stellate Cells/cytology , STAT3 Transcription Factor/metabolism , Ulmus/chemistry , Animals , Catechin/chemistry , Catechin/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Survival , Disease Models, Animal , Gene Expression Regulation/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Male , Phosphorylation , Plant Bark/chemistry , Plant Extracts/chemistry , Protein Transport/drug effects , Signal Transduction/drug effects
10.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757050

ABSTRACT

In our ongoing research to discover natural products with neuroprotective effects, hyperoside (quercetin 3-O-galactoside) was isolated from Acer tegmentosum, which has been used in Korean traditional medicine to treat liver-related disorders. Here, we demonstrated that hyperoside protects cultured dopaminergic neurons from death via reactive oxygen species (ROS)-dependent mechanisms, although other relevant mechanisms of hyperoside activity remain largely uncharacterized. For the first time, we investigated the neuroprotective effects of hyperoside on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in neurons, and the possible underlying mechanisms. Hyperoside significantly ameliorated the loss of neuronal cell viability, lactate dehydrogenase release, excessive ROS accumulation and mitochondrial membrane potential dysfunction associated with 6-OHDA-induced neurotoxicity. Furthermore, hyperoside treatment activated the nuclear erythroid 2-related factor 2 (Nrf2), an upstream molecule of heme oxygenase-1 (HO-1). Hyperoside also induced the expression of HO-1, an antioxidant response gene. Remarkably, we found that the neuroprotective effects of hyperoside were weakened by an Nrf2 small interfering RNA, which blocked the ability of hyperoside to inhibit neuronal death, indicating the vital role of HO-1. Overall, we show that hyperoside, via the induction of Nrf2-dependent HO-1 activation, suppresses neuronal death caused by 6-OHDA-induced oxidative stress. Moreover, Nrf2-dependent HO-1 signaling activation represents a potential preventive and therapeutic target in Parkinson's disease management.


Subject(s)
Antioxidants/pharmacology , Dopaminergic Neurons/drug effects , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Quercetin/analogs & derivatives , Acer/chemistry , Cell Line, Tumor , Dopaminergic Neurons/metabolism , Humans , Oxidative Stress , Oxidopamine/toxicity , Quercetin/pharmacology , Signal Transduction
11.
Arch Pharm Res ; 42(12): 1081-1091, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31705299

ABSTRACT

Daidzein, one of the important isoflavones, is extensively metabolized in the human body following consumption. In particular, 6,7,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, has been the focus of recent investigations due to its various health benefits, such as anti-cancer and anti-obesity effects. However, the protective effects of 6,7,4'-THIF have not yet been studied in models of Parkinson's disease (PD). Therefore, the present study aimed to investigate the protective activity of 6,7,4'-THIF on 6-hydroxydopamine (OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells. Pretreatment of SH-SY5Y cells with 6,7,4'-THIF significantly inhibited 6-OHDA-induced neuronal cell death, lactate dehydrogenase release, and reactive oxygen species production. In addition, 6,7,4'-THIF significantly attenuated reductions in 6-OHDA-induced superoxide dismutase activity and glutathione content. Moreover, 6,7,4'-THIF attenuated alterations in Bax and Bcl-2 expression and caspase-3 activity in 6-OHDA-induced SH-SY5Y cells. Furthermore, 6,7,4'-THIF significantly reduced 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2. Additionally, 6,7,4'-THIF effectively prevented 6-OHDA-induced loss of tyrosine hydroxylase. Taken together, these results suggest that 6,7,4'-THIF, a major metabolite of daidzein, may be an attractive option for treating and/or preventing neurodegenerative disorders such as PD.


Subject(s)
Antineoplastic Agents/pharmacology , Isoflavones/metabolism , Isoflavones/pharmacology , Neuroblastoma/drug therapy , Neurons/drug effects , Oxidopamine/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Isoflavones/chemistry , Molecular Structure , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/prevention & control , Tumor Cells, Cultured
12.
J Psychopharmacol ; 33(12): 1491-1500, 2019 12.
Article in English | MEDLINE | ID: mdl-31432769

ABSTRACT

PURPOSE: The transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that mediates synaptic modification in the nucleus accumbens (NAc). However, no study has yet examined the mechanism of TRPV1 in the NAc on cocaine reinstatement. We investigated the mechanism of TRPV1 in NAc on cocaine reinstatement using the conditioned place preference (CPP) test in mice. METHODS: We examined the effect of capsazepine (5 mg/kg, a TRPV1 antagonist, administered intraperitoneally (i.p.)), capsaicin (0.3 mg/kg, a TRPV1 agonist, administered i.p.), and genetic deletion of TRPV1 on the reinstatement of cocaine-induced CPP (15 mg/kg, administered i.p.). The expression of TRPV1 and Ca2+/calmodulin-mediated kinase II (CaMKII) in the NAc were determined after cocaine reinstatement. Microinjection of SB366791 (0.2 ng, a selective TRPV1 antagonist) in the NAc was assessed on SKF-81297 (1 µg, D1-like dopamine (DA) receptor agonist) primed cocaine reinstatement. RESULTS: Capsazepine suppressed and capsaicin potentiated cocaine CPP in the reinstatement phase. In addition, genetic deletion of TRPV1 inhibited cocaine-priming reinstatement. Cocaine reinstatement was mediated by increased TRPV1 expression in the NAc, which involves CaMKII. Microinjection of SB366791 in the NAc prevented the cocaine reinstatement evoked by microinjection of SKF-81297 in the NAc. CONCLUSIONS: These findings suggest that activation of TRPV1 mediates the stimulation of D1-like DA receptors and CaMKII in the NAc, resulting in the facilitation of cocaine reinstatement behaviors. Thus, our findings reveal a previously unknown TRPV1 mechanism in the reinstatement to drugs of abuse.


Subject(s)
Cocaine/administration & dosage , Conditioning, Psychological/drug effects , Receptors, Dopamine D1/metabolism , TRPV Cation Channels/metabolism , Animals , Behavior, Animal/drug effects , Benzazepines/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cocaine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nucleus Accumbens/drug effects , TRPV Cation Channels/genetics
13.
Arch Pharm Res ; 42(8): 722-731, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31350730

ABSTRACT

Isoorientin (ISO) is considered one of the most important flavonoids with various pharmacological effects such as antioxidant, anti-inflammatory, and anti-cancer activities. Despite these beneficial activities, the effects of ISO on learning and memory have not been investigated so far. The current study evaluated the memory-enhancing effects of ISO in a scopolamine-treated mouse model by using the Y-maze and passive avoidance tests. The results showed that ISO (5 and 10 mg/kg, p.o.) treatment significantly improved the cognitive impairments caused by scopolamine. Additionally, ISO significantly decreased scopolamine-induced acetylcholinesterase and thiobarbituric acid reactive substance activities in both the hippocampus and frontal cortex of mice. In addition, ISO significantly increased the levels of total superoxide dismutase induced by scopolamine in the hippocampus and frontal cortex. Moreover, Western blot results indicated that ISO reversed the decreases in expression of phosphorylated cAMP response element binding (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus and frontal cortex of scopolamine-treated mice. Thus, our results provide initial evidence that ISO ameliorates scopolamine-induced memory and cognitive impairments partly by restoring the cholinergic system, antioxidant defense, and p-CREB/BDNF signaling pathway, thereby exhibiting memory-enhancing activities.


Subject(s)
Antioxidants/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cholinergic Agents/pharmacology , Cognitive Dysfunction/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Frontal Lobe/drug effects , Hippocampus/drug effects , Luteolin/pharmacology , Animals , Cholinergic Agents/chemistry , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Luteolin/chemistry , Male , Memory/drug effects , Mice , Molecular Structure , Scopolamine , Signal Transduction/drug effects
14.
Neuron ; 103(4): 627-641.e7, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31255487

ABSTRACT

Analysis of human pathology led Braak to postulate that α-synuclein (α-syn) pathology could spread from the gut to brain via the vagus nerve. Here, we test this postulate by assessing α-synucleinopathy in the brain in a novel gut-to-brain α-syn transmission mouse model, where pathological α-syn preformed fibrils were injected into the duodenal and pyloric muscularis layer. Spread of pathologic α-syn in brain, as assessed by phosphorylation of serine 129 of α-syn, was observed first in the dorsal motor nucleus, then in caudal portions of the hindbrain, including the locus coeruleus, and much later in basolateral amygdala, dorsal raphe nucleus, and the substantia nigra pars compacta. Moreover, loss of dopaminergic neurons and motor and non-motor symptoms were observed in a similar temporal manner. Truncal vagotomy and α-syn deficiency prevented the gut-to-brain spread of α-synucleinopathy and associated neurodegeneration and behavioral deficits. This study supports the Braak hypothesis in the etiology of idiopathic Parkinson's disease (PD).


Subject(s)
Axonal Transport , Parkinsonian Disorders/etiology , Protein Aggregates , Vagus Nerve/metabolism , alpha-Synuclein/pharmacokinetics , Animals , Brain Chemistry , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Duodenum/innervation , Duodenum/metabolism , Humans , Injections, Intramuscular , Lewy Bodies/metabolism , Maze Learning , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Muscle, Smooth/innervation , Muscle, Smooth/metabolism , Nesting Behavior/physiology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/prevention & control , Parkinsonian Disorders/psychology , Phosphorylation , Protein Processing, Post-Translational , Pylorus/innervation , Pylorus/metabolism , Rotarod Performance Test , Vagotomy , alpha-Synuclein/administration & dosage , alpha-Synuclein/deficiency , alpha-Synuclein/toxicity
15.
Biomol Ther (Seoul) ; 27(4): 363-372, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30866601

ABSTRACT

Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson' disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3ß) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3ß pathways.

16.
Brain Res Bull ; 142: 197-206, 2018 09.
Article in English | MEDLINE | ID: mdl-30031818

ABSTRACT

Daidzein is one of the dietary isoflavones present in soybean-based products. After ingestion, daidzein is bioconverted into its major metabolite, 7,8,4'-trihydroxyisoflavone (THIF). Given the pharmacological importance of daidzein, 7,8,4'-THIF has also attracted the interest of researchers. However, there are no reports on the effects of 7,8,4'-THIF on cognition and memory with regard to the cholinergic system. Therefore, this study sought to evaluate the memory-enhancing effects of 7,8,4'-THIF in mice. Treatment with 7,8,4'-THIF ameliorated the cognitive impairments induced by scopolamine, a muscarinic acetylcholine receptor antagonist, in the Y-maze and passive avoidance tests. Interestingly, 7,8,4'-THIF treatment also improved cognitive function in normal mice. This treatment was also able to reverse acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus. Finally, 7,8,4'-THIF significantly increased the expression levels of the following molecules in the hippocampus: brain-derived neurotrophic factor (BDNF); phospho extracellular signal-regulated kinase (ERK); phospho cAMP response element binding (CREB); and choline acetyltransferase (ChAT). Our data suggest that 7,8,4'-THIF, a metabolized product of daidzein, improves cognitive function by activating the cholinergic system and the BDNF/ERK/CREB signaling pathway in mice.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , Isoflavones/pharmacology , Memory/drug effects , Nootropic Agents/pharmacology , Receptors, Muscarinic/metabolism , Animals , Choline O-Acetyltransferase/metabolism , Cognition/physiology , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Isoflavones/chemistry , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory/physiology , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Molecular Structure , Muscarinic Antagonists , Nootropic Agents/chemistry , Random Allocation , Scopolamine , Signal Transduction/drug effects
17.
Nat Nanotechnol ; 13(9): 812-818, 2018 09.
Article in English | MEDLINE | ID: mdl-29988049

ABSTRACT

Though emerging evidence indicates that the pathogenesis of Parkinson's disease is strongly correlated to the accumulation1,2 and transmission3,4 of α-synuclein (α-syn) aggregates in the midbrain, no anti-aggregation agents have been successful at treating the disease in the clinic. Here, we show that graphene quantum dots (GQDs) inhibit fibrillization of α-syn and interact directly with mature fibrils, triggering their disaggregation. Moreover, GQDs can rescue neuronal death and synaptic loss, reduce Lewy body and Lewy neurite formation, ameliorate mitochondrial dysfunctions, and prevent neuron-to-neuron transmission of α-syn pathology provoked by α-syn preformed fibrils5,6. We observe, in vivo, that GQDs penetrate the blood-brain barrier and protect against dopamine neuron loss induced by α-syn preformed fibrils, Lewy body/Lewy neurite pathology and behavioural deficits.


Subject(s)
Blood-Brain Barrier/metabolism , Graphite , Parkinson Disease/prevention & control , Protein Aggregation, Pathological/prevention & control , Quantum Dots , alpha-Synuclein/metabolism , Animals , Blood-Brain Barrier/pathology , Cells, Cultured , Graphite/chemistry , Graphite/pharmacokinetics , Graphite/pharmacology , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Quantum Dots/chemistry , Synapses/metabolism , Synapses/pathology
18.
Nat Med ; 24(7): 931-938, 2018 07.
Article in English | MEDLINE | ID: mdl-29892066

ABSTRACT

Activation of microglia by classical inflammatory mediators can convert astrocytes into a neurotoxic A1 phenotype in a variety of neurological diseases1,2. Development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat these diseases for which there are no disease-modifying therapies. Glucagon-like peptide-1 receptor (GLP1R) agonists have been indicated as potential neuroprotective agents for neurologic disorders such as Alzheimer's disease and Parkinson's disease3-13. The mechanisms by which GLP1R agonists are neuroprotective are not known. Here we show that a potent, brain-penetrant long-acting GLP1R agonist, NLY01, protects against the loss of dopaminergic neurons and behavioral deficits in the α-synuclein preformed fibril (α-syn PFF) mouse model of sporadic Parkinson's disease14,15. NLY01 also prolongs the life and reduces the behavioral deficits and neuropathological abnormalities in the human A53T α-synuclein (hA53T) transgenic mouse model of α-synucleinopathy-induced neurodegeneration16. We found that NLY01 is a potent GLP1R agonist with favorable properties that is neuroprotective through the direct prevention of microglial-mediated conversion of astrocytes to an A1 neurotoxic phenotype. In light of its favorable properties, NLY01 should be evaluated in the treatment of Parkinson's disease and related neurologic disorders characterized by microglial activation.


Subject(s)
Astrocytes/pathology , Microglia/pathology , Neuroprotective Agents/metabolism , Parkinson Disease/pathology , Amyloid/metabolism , Animals , Disease Models, Animal , Humans , Mice, Inbred C57BL , Mice, Transgenic , alpha-Synuclein/metabolism
19.
Hum Mol Genet ; 27(13): 2344-2356, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29897434

ABSTRACT

Accumulating evidence suggests that the non-receptor tyrosine kinase c-Abl plays an important role in the progression of Parkinson's disease (PD) and c-Abl inhibition could be neuroprotective in PD and related α-synucleinopathies. Nilotinib, a c-Abl inhibitor, has shown improved motor and cognitive symptoms in PD patients. However, issues concerning blood-brain barrier (BBB) penetration, lack of selectivity and safety still remain. Radotinib HCl is a selective Bcr-Abl kinase inhibitor that not only effectively access the brain, but also exhibits greater pharmacokinetic properties and safety profiles compared to Nilotinib and other c-Abl inhibitors. Here, we show the neuroprotective efficacy of Radotinib HCl, a brain penetrant c-Abl inhibitor, in a pre-clinical model of PD. Importantly, in vitro studies demonstrate that the treatment of Radotinib HCl protects the α-synuclein preformed fibrils (PFF)-induced neuronal toxicity, reduces the α-synuclein PFF-induced Lewy bodies (LB)/Lewy neurites (LN)-like pathology and inhibits the α-synuclein PFF-induced c-Abl activation in primary cortical neurons. Furthermore, administration of Radotinib HCl inhibits c-Abl activation and prevents dopaminergic neuron loss, neuroinflammation and behavioral deficits following α-synuclein PFF-induced toxicity in vivo. Taken together, our findings indicate that Radotinib HCl has beneficial neuroprotective effects in PD and provides an evidence that selective and brain permeable c-Abl inhibitors can be potential therapeutic agents for the treatment of PD and related α-synucleinopathies.


Subject(s)
Brain/drug effects , Nerve Degeneration/drug therapy , Parkinson Disease/drug therapy , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , alpha-Synuclein/genetics , Animals , Blood-Brain Barrier , Brain/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Humans , Lewy Bodies/drug effects , Mice , Nerve Degeneration/genetics , Neuroprotective Agents/administration & dosage , Parkinson Disease/genetics , Parkinson Disease/pathology , Proto-Oncogene Proteins c-abl/genetics , Pyrimidines/administration & dosage , Sesquiterpenes/administration & dosage
20.
Cell Physiol Biochem ; 46(5): 1835-1848, 2018.
Article in English | MEDLINE | ID: mdl-29705776

ABSTRACT

BACKGROUND/AIMS: Stem cell transplantation has emerged as a promising therapeutic strategy, but the exact mechanisms by which stem cells exposed to hypoxic conditions increase the survival rate and rescue ischemic injury at the graft site are not well known. In this study, we aimed to determine if c-Met-activated mesenchymal stem cells (MSCs) pre-exposed to hypoxia promote therapeutic efficacy when transplanted to ischemic models, and whether c-Met interacts with cellular prion protein (PrPC) present in the ischemic tissue. METHODS: Western blot analysis was performed to determine the expression levels of PrPC, C-caspase-3, and C-PARP-1, as well as the phosphorylation of Akt, p38, JNK, and BAX. A co-immunoprecipitation assay was performed to show that PrPC binds with c-Met in vitro. An adhesion assay was performed to explore the alterations in MSCs attached to myoblasts (in vitro), and an invasion assay was performed to determine the effect on MSC invasion capacity upon interaction with myoblast-induced c-Met and PrPC. CD31-positive capillaries and αSMA-positive arterioles in in vivo hindlimb ischemic tissue were quantified by immunofluorescence staining. The level of apoptosis in the tissue of each group was assessed by quantifying the number of C-caspase-3-positive cells. Finally, laser Doppler technology was utilized to detect the enhanced angiogenic effects in vivo. RESULTS: We showed that hypoxic conditions increased PrPC levels in vivo (hindlimb ischemic tissue) and in vitro (myoblasts) and increased c-Met levels in MSCs. To identify the relationship between c-Met from MSCs and PrPC from myoblasts, we used a co-culturing system with myoblasts and MSCs pre-exposed to hypoxia. Hypoxia increased the phosphorylation of mitogen-activated protein kinases. Transplantation of hypoxia-pre-exposed MSCs to the ischemic site increased anti-apoptosis and enhanced the survival and proliferation of transplanted MSCs in a murine hindlimb model, resulting in improved functional recovery of the ischemic tissue. All the aforementioned effects were inhibited by the pretreatment of MSCs with the c-Met-neutralizing antibody Conclusion: c-Met-activated MSCs pre-exposed to hypoxia interact with PrPC at the site of ischemic injury to increase the efficiency of MSC transplantation. Hence, our study demonstrated that c-Met is a potential target for MSC-based therapies.


Subject(s)
Hindlimb/blood supply , Ischemia/metabolism , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , PrPC Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Hindlimb/metabolism , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C , Mice, Nude , Myoblasts/cytology , Myoblasts/metabolism , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...