Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Virol ; 96(4): e29600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591240

ABSTRACT

The lower respiratory system serves as the target and barrier for beta-coronavirus (beta-CoV) infections. In this study, we explored beta-CoV infection dynamics in human bronchial epithelial (HBE) organoids, focusing on HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2. Utilizing advanced organoid culture techniques, we observed robust replication for all beta-CoVs, particularly noting that SARS-CoV-2 reached peak viral RNA levels at 72 h postinfection. Through comprehensive transcriptomic analysis, we identified significant shifts in cell population dynamics, marked by an increase in goblet cells and a concurrent decrease in ciliated cells. Furthermore, our cell tropism analysis unveiled distinct preferences in viral targeting: HCoV-OC43 predominantly infected club cells, while SARS-CoV had a dual tropism for goblet and ciliated cells. In contrast, SARS-CoV-2 primarily infected ciliated cells, and MERS-CoV showed a marked affinity for goblet cells. Host factor analysis revealed the upregulation of genes encoding viral receptors and proteases. Notably, HCoV-OC43 induced the unfolded protein response pathway, which may facilitate viral replication. Our study also reveals a complex interplay between inflammatory pathways and the suppression of interferon responses during beta-CoV infections. These findings provide insights into host-virus interactions and antiviral defense mechanisms, contributing to our understanding of beta-CoV infections in the respiratory tract.


Subject(s)
Coronavirus OC43, Human , Middle East Respiratory Syndrome Coronavirus , Humans , Cell Line , Bronchi , SARS-CoV-2 , Interferons , Organoids
2.
Brain Sci ; 12(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35203935

ABSTRACT

Heart rate variability (HRV) has been suggested to reflect executive function and related neural activity. Executive dysfunction has been suggested to play an important role in the pathophysiology of emotional disorders. The purpose of this study was to investigate whether HRV showed a significant correlation with electroencephalogram (EEG) during a working memory performance in patients with depressive or anxiety disorder. A retrospective analysis was conducted with data from 61 patients with depressive disorder (43 women and 18 men) and 59 patients with anxiety disorder (35 women and 24 men). HRV was measured in the resting state, and EEG was recorded in the resting state and during the execution of a working memory task. It was performed in patients with depressive and anxiety disorder, and the paired sample t-test between resting state and task performance, as well as the partial correlation analysis between HRV and EEG, was conducted. Both depressed and anxious patients showed weaker beta relative power during the working memory task compared to the rest period. The resting-state EEG did not correlate with HRV parameters in both groups. In depressed patients, HRV showed a positive correlation with delta power during the task and a negative correlation with beta relative power during the task. In patients with anxiety disorder, HRV showed a significant positive correlation with theta power of the right frontal region during the task. Our results suggest that HRV would be related to executive-function-related neural activity in patients with depressive or anxiety disorder. Future studies with more subjects, including healthy controls, are needed to verify the correlation between HRV and EEG and to come up with a more comprehensive picture of neurobiological changes in emotional disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...