Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(10): 8813-8818, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28155274

ABSTRACT

A new type of physically cross-linked solid polymer electrolyte was demonstrated by using a poly(vinylidene fluoride) (PVDF) homopolymer in a room-temperature ionic liquid. The physical origins of gelation, specific capacitance, ionic conductivity, mechanical property, and capacitive charge modulation in organic thin-film electrochemical transistors were investigated systematically. Gelation occurs through bridging phase-separated homopolymer crystals by polymer chains in the composite electrolyte, thereby forming a rubbery network. The resulting homopolymer ion gels are able to accommodate both outstanding electrical (ionically conductive and capacitive) and mechanical (flexible and free-standing) characteristics of the component ionic liquid and the structuring polymer, respectively. These ion gels were successfully applied to organic thin-film transistors as high-capacitance gate dielectrics. Therefore, these results provide an effective route to generate a highly conductive rubbery polymer electrolyte that can be used in widespread electronic and electrochemical devices.

2.
Sci Rep ; 6: 29805, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27418389

ABSTRACT

Nowadays, there has been an increasing demand to develop low-cost, disposable or reusable display devices to meet and maximize short-term user convenience. However, the disposable device has unfortunately not materialized yet due to the light-emitting materials and fabrication process issues. Here, we report sticker-type electrochemiluminescent (ECL) device using self-supporting, light-emitting gel electrolytes. The self-supporting ion gels were formulated by mixing a network-forming polymer, ionic liquid, and metal complex luminophore. The resulting ion gels exhibit excellent mechanical strength to form free-standing rubbery light-emitting electrolyte films, which enables the fabrication of sticker-type display by simple transfer and lamination processes on various substrates. The sticker-type ECL devices can be operated under an AC bias and exhibit a low operating voltage of 4 V (peak-to-peak voltage) with a maximum luminance of 90 cd/m(2). It is notable that the result is the first work to realize sticker displays based on electrochemical light emitting devices and can open up new possibilities for flexible or disposal display.

SELECTION OF CITATIONS
SEARCH DETAIL
...