Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 18(1): 122, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31286972

ABSTRACT

BACKGROUND: Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic sequencing of the marine bacterium Ochrovirga pacifica. RESULTS: The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 (DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold. CONCLUSION: Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and hemicellulose-like complex substrates.


Subject(s)
Acetylesterase/metabolism , Bacterial Proteins/metabolism , Endo-1,4-beta Xylanases/metabolism , Fagus/chemistry , Flavobacteriaceae/enzymology , Xylans/metabolism , Acetylesterase/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Enzyme Stability , Flavobacteriaceae/genetics , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Open Reading Frames , Seawater/microbiology , Substrate Specificity , Temperature
2.
Curr Microbiol ; 75(7): 835-841, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29464363

ABSTRACT

A gram-negative, rod-shaped, motile, oxidase- and catalase-positive, non-pigmented marine bacterium, designated strain OS-11M-2T, was isolated from a coral sample collected from the Osakura coastal area in Micronesia. Phylogenetic analysis based on 16S ribosomal RNA (rRNA) gene sequences indicated that strain OS-11M-2T is a member of the family Vibrionaceae, its closest neighbors being Photobacterium damselae subsp. piscicida NCIMB 2058T (94.9%), Photobacterium damselae subsp. damselae CIP 102761T (94.75%), Grimontia marina IMCC5001T (94.5%), Enterovibrio coralii LMG 22228T (94.5%), and Grimontia celer 96-237T (94.5%). The major cellular fatty acids were summed feature 3 (21.4%), summed feature 8 (18.5%), iso-C16:0 (13.8%), and C16:0 (11.9%). The major respiratory quinone of the bacterium was ubiquinone-8 (Q-8) and its major polar lipid phosphatidylethanolamine. Six amino lipids, two phospholipids, and one polar lipid, all unidentified, were detected. The DNA G+C content was 49.7 mol%. The 16S rRNA gene sequence of OS-11M-2T was registered in GenBank under accession number MF359550. On the basis of phenotypic, genotypic, and phylogenetic analyses, strain OS-11M-2T represents a novel genus of the family Vibrionaceae, for which we propose the name Corallibacterium pacifica gen. nov., sp. nov., with the type strain of the type species being OS-11M-2T (= KCCM 43265T). The digital protologue database (DPD) taxon number for strain OS-11M-2T is GA00041.


Subject(s)
Anthozoa/microbiology , Vibrionaceae/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Micronesia , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Vibrionaceae/classification , Vibrionaceae/genetics , Vibrionaceae/metabolism
3.
J Microbiol Biotechnol ; 27(8): 1441-1448, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28621106

ABSTRACT

Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy method for identifying marine bacteria that produce antibiotic compounds. Eight randomly selected marine target bacterial species (Agrococcus terreus, Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, P. piscicida, P. rubra, and Zunongwangia atlantica) were tested for production of antibacterial compounds against four strains of test bacteria (B. cereus, B. subtilis, Halomonas smyrnensis, and Vibrio alginolyticus). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P. flavipulchra, P. peptidolytica, P. piscicida, and P. rubra tested against B. cereus, B. subtilis, and H. smyrnensis. The efficiency of colony scraping and broth culture methods for antimicrobial compound extraction was also compared using a disk diffusion assay. P. peptidolytica, P. piscicida, and P. rubra showed antagonistic activity against H. smyrnensis, B. cereus, and B. subtilis, respectively, only in the colony scraping method. Our results show that colony picking and colony scraping are effective, quick, and easy methods of screening for antibacterial compound-producing bacteria.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Bacteriological Techniques/methods , Mass Screening/methods , Aquatic Organisms/isolation & purification , Aquatic Organisms/metabolism
4.
J Microbiol Biotechnol ; 24(11): 1559-65, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25085570

ABSTRACT

Cellulase and xylanase are main hydrolysis enzymes for the degradation of cellulosic and hemicellulosic biomass, respectively. In this study, our aim was to develop and test the efficacy of a rapid, high-throughput method to screen hydrolytic-enzyme-producing microbes. To accomplish this, we modified the 3,5-dinitrosalicylic acid (DNS) method for microwell plate-based screening. Targeted microbial samples were initially cultured on agar plates with both cellulose and xylan as substrates. Then, isolated colonies were subcultured in broth media containing yeast extract and either cellulose or xylan. The supernatants of the culture broth were tested with our modified DNS screening method in a 96-microwell plate, with a 200 µl total reaction volume. In addition, the stability and reliability of glucose and xylose standards, which were used to determine the enzymatic activity, were studied at 100°C for different time intervals in a dry oven. It was concluded that the minimum incubation time required for stable color development of the standard solution is 20 min. With this technique, we successfully screened 21 and 31 cellulase- and xylanase-producing strains, respectively, in a single experimental trial. Among the identified strains, 19 showed both cellulose and xylan hydrolyzing activities. These microbes can be applied to bioethanol production from cellulosic and hemicellulosic biomass.


Subject(s)
Bacteria/enzymology , Cellulase/metabolism , Endo-1,4-beta Xylanases/metabolism , Enzyme Assays/methods , Fungi/enzymology , Colorimetry/methods , Salicylates/metabolism
5.
Curr Microbiol ; 69(4): 445-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24842302

ABSTRACT

A strain designated as S85(T) was isolated from a seaweed collected from coastal area of Chuuk State in Micronesia. The strain was gram-negative, rod-shaped, and non-motile and formed yellow colonies on the SWY agar (0.2 % yeast extract and 1.5 % agar in seawater) and Marine agar 2216. The strain grew at pH 5-9 (optimum, pH 8), at 15-40 °C (optimum, 25-28 °C), and with 1-9 % (w/v) NaCl (optimum, 3 %). The phylogenetic analysis based on 16S rRNA gene sequence showed that strain S85(T) was related to Lutibacter litoralis CL-TF09(T) and Maritimimonas rapanae A31(T) with 91.4 % and with 90.5 % similarity, respectively. The dominant fatty acids were iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH, C16:0 3-OH and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The major isoprenoid quinone was MK-6. The DNA G+C content of the type strain was 34.6 mol %. The major polar lipids were phosphatidylethanolamine, an unknown glycolipid and two unknown polar lipids. Based on this polyphasic taxonomic data, strain S85(T) stands for a novel species of a new genus, and we propose the name Ochrovirga pacifica gen. nov., sp. nov. The type strain of O. pacifica is S85(T) (=KCCM 90106 =JCM 18327(T)).


Subject(s)
Flavobacteriaceae/isolation & purification , Seawater/microbiology , Seaweed/microbiology , Agar/metabolism , Base Composition , Fatty Acids/metabolism , Flavobacteriaceae/classification , Flavobacteriaceae/genetics , Flavobacteriaceae/immunology , Flavobacteriaceae/metabolism , Micronesia , Molecular Sequence Data , Phylogeny
6.
Curr Microbiol ; 67(6): 742-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23907492

ABSTRACT

An aerobic, Gram-negative, coccoid to short rod-shaped and non-flagellated marine bacterial strain S354(T) was isolated from seawater of Micronesia. The strain was capable to degrade agar-forming slight depression into agar plate. Growth occurred at a temperature range of 12-44 °C, a pH range of 5-9, and a salinity range of 1-7 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences suggested that S354(T) belongs to the family Flammeovirgaceae. The novel strain was most closely related to Limibacter armeniacum YM 11-185(T) with similarity of 92.5 %. The DNA G+C content was 43.8 mol%. The major fatty acids (>10 %) were iso-C15:0 and C16:1 ω5c. The predominant isoprenoid quinone was determined to be MK-7. Polar lipid profile of S354(T) consisted of phosphatidylethanolamine, unknown polar lipid, and unknown glycolipids. Based on the phenotypic, phylogenetic, biochemical, and physiological tests conducted in this study, S354(T) is proposed to represent a type strain of a novel genus and species. The 16S rRNA gene sequence of S354(T) is registered in GenBank under the accession number JQ639084. The type of strain Algivirga pacifica gen. nov., sp. nov. is S354(T) (=KCCM 90107(T)=JCM 18326(T)).


Subject(s)
Agar/metabolism , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Seawater/microbiology , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/metabolism , Base Composition , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Hydrogen-Ion Concentration , Micronesia , Microscopy, Electron, Scanning , Molecular Sequence Data , Phospholipids/analysis , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Temperature
7.
J Bacteriol ; 194(22): 6325, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23105065

ABSTRACT

We isolated a xylan-degrading bacterium from seawater of Micronesia and identified it as Oceanicola sp. strain S124. We sequenced the Oceanicola sp. S124 genome using GSFLX 454 pyrosequencing and predicted 4,433 open reading frames (ORFs) including putative saccharification and phage-related genes.


Subject(s)
Genome, Bacterial , Rhodobacteraceae/genetics , Molecular Sequence Data , Rhodobacteraceae/classification , Species Specificity
8.
J Bacteriol ; 194(5): 1260, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22328757

ABSTRACT

In this study, we isolated xylan-degrading bacteria from a coastal lagoon of Micronesia and identified the bacteria as Marinobacterium stanieri S30. GSFLX 454 pyrosequencing and sequence analysis of the M. stanieri S30 genome generated 4,007 predicted open reading frames (ORFs) that could be candidate genes for producing enzymes with different catalytic functions.


Subject(s)
Alteromonadaceae/genetics , Alteromonadaceae/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Seawater/microbiology , Alteromonadaceae/metabolism , Micronesia , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA , Xylans/metabolism
9.
J Bacteriol ; 193(21): 6107, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21994933

ABSTRACT

An agar-degrading marine bacterium identified as a novel member of the family Flavobacteriaceae (strain S85) was isolated from seawater in Micronesia. The sequenced strain S85 genome is composed of 3,384,629 bp in a circular chromosome, which includes 2,883 complete open reading frames.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Flavobacteriaceae/genetics , Genome, Bacterial , Agar/metabolism , Chromosomes, Bacterial , Flavobacteriaceae/isolation & purification , Flavobacteriaceae/metabolism , Micronesia , Molecular Sequence Data , Open Reading Frames , Seawater/microbiology , Sequence Analysis, DNA
10.
J Bacteriol ; 193(19): 5538, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21914866

ABSTRACT

We report here the annotated genome sequence of the marine bacterium Alteromonas sp. S89 and the identification of six genes coding for agar-degrading enzymes. The sequenced Alteromonas sp. S89 genome is composed of a 3,864,871-bp circular chromosome that includes 3,236 complete open reading frames.


Subject(s)
Alteromonas/genetics , Alteromonas/metabolism , Genome, Bacterial/genetics , Glycoside Hydrolases/biosynthesis , DNA, Bacterial/genetics , Molecular Sequence Data , Open Reading Frames/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...