Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 642: 771-778, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37037081

ABSTRACT

The functionalization of semiconductor nanocrystals, quantum dots (QDs), with small organic molecules has been studied extensively to gain better knowledge on how to tune the electronic, optical and chiroptical properties of QDs. Chiral QDs have progressively emerged as key materials in a vast range of applications including biosensing and biorecognition, imaging, asymmetric catalysis, optoelectronic devices, and spintronics. To engage the full potential of the unique properties of chiral nanomaterials and be able to prepare them with tailorable chiroptical characteristics, it is essential to understand how chirality is rendered from chiral molecular ligands at the surface of nanocrystals to the electronic states of QDs. Using a series of polar protic and aprotic solvents together with ammonium (NH4+), tetramethylammonium (TMA+), and tetrabutylammonium (TBA+) countercations in the preparation of threonine-functionalized cadmium sulfide (Thr-CdS) QDs by phase transfer ligand exchange approach, we demonstrated the significance of the role both the solvent and the countercations play in the transfer of chirality from chiral molecular ligand to achiral semiconductor QDs as apparent by the modulations of the signatures and anisotropy of the circular dichroism (CD) spectra. Moreover, we have utilized tetrabutylammonium countercation to successfully synthesize chiral QDs in nonpolar cyclohexane solvent for the first time. This study provides further insights into the origin of the ligand induced chirality of colloidal nanomaterials and facilitates the synthesis of tailormade chiral QDs.

2.
Chirality ; 34(1): 70-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34710252

ABSTRACT

Juices, wines, and extracts from plants contain high concentrations of various chiral compounds such as carboxylic acids or sugars. Several prior studies reported the synthesis of metallic and semiconducting nanoparticles relying on components of complex biological solutions. Herein, we present preparation of chiral CdS and CdSe quantum dots (QDs) using apple juice and red wine via phase transfer ligand exchange. Although both apple juice and red wine contain a complex mixture of chiral and achiral compounds, we have successfully used them for selective induction of predicted chiroptical properties and confirmed L-malic acid from the apple juice and L-tartaric acid from the red wine as the chiral inducers. This work illustrates the capability of using complex mixtures to construct chiral QDs with desired chiroptical properties as well as potential of QDs to selectively report a chiral molecule in a complex chiral mixture without the need for elaborate chiral recognition system.


Subject(s)
Malus , Quantum Dots , Wine , Circular Dichroism , Stereoisomerism
3.
J Mater Chem B ; 9(47): 9658-9669, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34647566

ABSTRACT

Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.


Subject(s)
Influenza A virus/isolation & purification , Nanoparticles/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Viral Fusion Proteins/metabolism , Animals , Carbocyanines/chemistry , Chickens , Eggs/virology , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Influenza A virus/metabolism , Limit of Detection , Membrane Fusion/drug effects , Membranes, Artificial , Peptides/chemical synthesis , Peptides/metabolism , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...