Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 5(12): 1426-1436, 2021 12.
Article in English | MEDLINE | ID: mdl-34282290

ABSTRACT

Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.


Subject(s)
Immunotherapy , Lymph Nodes , Animals , Humans , Lymphatic Metastasis , Lymphocytes , Mice , T-Lymphocytes
2.
Endocrinology ; 153(10): 4883-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22893725

ABSTRACT

At puberty, neurokinin B (NKB) and kisspeptin (Kiss1) may help to amplify GnRH secretion, but their precise roles remain ambiguous. We tested the hypothesis that NKB and Kiss1 are induced as a function of pubertal development, independently of the prevailing sex steroid milieu. We found that levels of Kiss1 mRNA in the arcuate nucleus (ARC) are increased prior to the age of puberty in GnRH/sex steroid-deficient hpg mice, yet levels of Kiss1 mRNA in wild-type mice remained constant, suggesting that sex steroids exert a negative feedback effect on Kiss1 expression early in development and across puberty. In contrast, levels of Tac2 mRNA, encoding NKB, and its receptor (NK3R; encoded by Tacr3) increased as a function of puberty in both wild-type and hpg mice, suggesting that during development Tac2 is less sensitive to sex steroid-dependent negative feedback than Kiss1. To compare the relative responsiveness of Tac2 and Kiss1 to the negative feedback effects of gonadal steroids, we examined the effect of estradiol (E(2)) on Tac2 and Kiss1 mRNA and found that Kiss1 gene expression was more sensitive than Tac2 to E(2)-induced inhibition at both juvenile and adult ages. This differential estrogen sensitivity was tested in vivo by the administration of E(2). Low levels of E(2) significantly suppressed Kiss1 expression in the ARC, whereas Tac2 suppression required higher E(2) levels, supporting differential sensitivity to E(2). Finally, to determine whether inhibition of NKB/NK3R signaling would block the onset of puberty, we administered an NK3R antagonist to prepubertal (before postnatal d 30) females and found no effect on markers of pubertal onset in either WT or hpg mice. These results indicate that the expression of Tac2 and Tacr3 in the ARC are markers of pubertal activation but that increased NKB/NK3R signaling alone is insufficient to trigger the onset of puberty in the mouse.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Feedback, Physiological/physiology , Kisspeptins/metabolism , Protein Precursors/metabolism , Sexual Maturation/physiology , Tachykinins/metabolism , Animals , Estradiol/blood , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/genetics , Luteinizing Hormone/blood , Mice , Mice, Knockout , Neurokinin B/genetics , Neurokinin B/metabolism , Neurons/metabolism , Protein Precursors/genetics , Signal Transduction/physiology , Tachykinins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...