Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 22(4): e3002304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662791

ABSTRACT

Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.


Subject(s)
Symbiosis , Animals , Host Microbial Interactions/physiology , Heteroptera/microbiology , Heteroptera/physiology , Genetic Variation , Biodiversity , Ecosystem , Microbiota
2.
Curr Biol ; 33(13): 2830-2838.e4, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37385254

ABSTRACT

Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.


Subject(s)
Heteroptera , Symbiosis , Animals , Plants , Feces , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...