Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
PLoS Negl Trop Dis ; 18(7): e0012299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959285

ABSTRACT

An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.


Subject(s)
DNA Barcoding, Taxonomic , Malaria, Vivax , Plasmodium vivax , Polymorphism, Single Nucleotide , Plasmodium vivax/genetics , Plasmodium vivax/classification , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Thailand/epidemiology , Genotype , China/epidemiology , Genetic Variation , Gene Flow
2.
Malar J ; 22(1): 302, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814267

ABSTRACT

BACKGROUND: Plasmodium vivax malaria is considered a major threat to malaria eradication. The radical cure for P. vivax malaria normally requires a 14-day administration of primaquine (PQ) to clear hypnozoites. However, maintaining adherence to PQ treatment is a significant challenge, particularly in malaria-endemic rural areas. Hence, this study aimed to formulate interventions for promoting patients' commitment to PQ treatment in a highly malaria-endemic township in Myanmar. METHODS: A qualitative study was conducted in Waingmaw Township in northern Myanmar, where P. vivax malaria is highly endemic. Key stakeholders including public health officers and community members participated in focus group discussions (FGDs) and in-depth interviews (IDIs) in September 2022. Data were collected using validated guidelines, translated into English, and visualized through thematic analysis. RESULTS: Responsible individuals from different levels of the Myanmar National Malaria Control Programme participated in the IDIs. Most of them reported being aware of the markedly increasing trend of P. vivax and the possibility of relapse cases, especially among migrants who are lost to follow-up. Workload was a key concern surrounding intervention implementation. The respondents discussed possible interventions, such as implementing directly observed treatment (DOT) by family members, piloting a shorter PQ regimen, expanding the community's malaria volunteer network, and strengthening health education activities using local languages to promote reasonable drug adherence. FGDs among community members revealed that although people were knowledgeable about malaria symptoms, places to seek treatment, and the use of bed nets to prevent mosquito bites, most of them still preferred to be treated by quack doctors and rarely used insecticide-treated nets at worksites. Many often stopped taking the prescribed drugs once the symptoms disappeared. Nevertheless, some respondents requested more bed nets to be distributed and health promotion activities to be conducted. CONCLUSION: In rural areas where human resources are limited, interventions such as implementing family member DOT or shortening PQ regimens should be introduced to enhance the radical cure for the P. vivax infection. Disseminating information about the importance of taking the entire treatment course and emphasizing the burden of relapse is also essential.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Humans , Primaquine/therapeutic use , Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Myanmar/epidemiology , Malaria/drug therapy , Malaria/prevention & control , Malaria/epidemiology , Recurrence , Medication Adherence , Plasmodium vivax
3.
Res Sq ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37720045

ABSTRACT

Background: Plasmodium vivax malaria is considered a major threat to malaria eradication. The radical cure for P. vivax malaria normally requires a 14-day administration of primaquine (PQ) to clear hypnozoites. However, maintaining adherence to PQ treatment is a significant challenge, particularly in malaria-endemic rural areas. Hence, this study aimed to formulate interventions for promoting patients' commitment to PQ treatment in a highly malaria-endemic township in Myanmar. Methods: A qualitative study was conducted in Waingmaw Township in northern Myanmar, where P. vivax malaria is highly endemic. Key stakeholders including public health officers and community members participated in focus group discussions (FGDs) and in-depth interviews (IDIs) in September 2022. Data were collected using validated guidelines, translated into English, and visualized through thematic analysis. Results: Responsible individuals from different levels of the Myanmar National Malaria Control Program participated in the IDIs. Most of them reported being aware of the markedly increasing trend of P. vivax and the possibility of relapse cases, especially among migrants who are lost to follow-up. Workload was a key concern surrounding intervention implementation. The respondents discussed possible interventions, such as implementing directly observed treatment (DOT) by family members, piloting a shorter PQ regimen, expanding the community's malaria volunteer network, and strengthening health education activities using local languages to promote reasonable drug adherence. FGDs among community members revealed that although people were knowledgeable about malaria symptoms, places to seek treatment, and the use of bed nets to prevent mosquito bites, most of them still preferred to be treated by quack doctors and rarely used insecticide-treated nets at worksites. Many often stopped taking the prescribed drugs once the symptoms disappeared. Nevertheless, some respondents requested more bed nets to be distributed and health promotion activities to be conducted. Conclusion: In rural areas where human resources are limited, interventions such as implementing family member DOT or shortening PQ regimens should be introduced to enhance the radical cure for the P. vivax infection. Disseminating information about the importance of taking the entire treatment course and emphasizing the burden of relapse is also essential.

4.
Sci Rep ; 13(1): 5963, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045879

ABSTRACT

Targeted mass primaquine treatment (TPT) might be an effective intervention to facilitate elimination of vivax malaria in Myanmar by 2030. In this study, we explored the factors hindering coverage of a TPT campaign conducted in a malarious township of northern Myanmar. From August 2019 to July 2020, a cross-sectional exploratory design including quantitative and qualitative data was conducted in five villages with high P. vivax prevalence following a TPT campaign. Among a targeted population of 2322; 1973 (85.0%) participated in the baseline mass blood survey (MBS) and only 52.0% of the total targeted population (1208, 91.9% of total eligible population) completed the TPT. G6PD deficiency was found among 13.5% of total MBS participants and those were excluded from TPT. Of 1315 eligible samples, farmers and gold miners, males, and those aged 15 to 45 years had higher percentages of non-participation in TPT. Qualitative findings showed that most of the non-participation groups were outside the villages during TPT because of time-sensitive agricultural and other occupational or education-related purposes. In addition to mitigating of some inclusion criteria (i.e. including young children or offering weekly PQ treatment to G6PD deficient individuals), strengthening community awareness and increasing engagement should be pursued to increase community participation.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Male , Child , Humans , Child, Preschool , Primaquine/therapeutic use , Antimalarials/therapeutic use , Cross-Sectional Studies , Myanmar/epidemiology , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology
5.
Infect Dis Poverty ; 12(1): 2, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36709318

ABSTRACT

BACKGROUND: Myanmar bears the heaviest malaria burden in the Greater Mekong Subregion (GMS). This study assessed the spatio-temporal dynamics and environmental predictors of Plasmodium falciparum and Plasmodium vivax malaria in Myanmar. METHODS: Monthly reports of malaria cases at primary health centers during 2011-2017 were analyzed to describe malaria distribution across Myanmar at the township and state/region levels by spatial autocorrelation (Moran index) and spatio-temporal clustering. Negative binomial generalized additive models identified environmental predictors for falciparum and vivax malaria, respectively. RESULTS: From 2011 to 2017, there was an apparent reduction in malaria incidence in Myanmar. Malaria incidence peaked in June each year. There were significant spatial autocorrelation and clustering with extreme spatial heterogeneity in malaria cases and test positivity across the nation (P < 0.05). Areas with higher malaria incidence were concentrated along international borders. Primary clusters of P. falciparum persisted in western townships, while clusters of P. vivax shifted geographically over the study period. The primary cluster was detected from January 2011 to December 2013 and covered two states (Sagaing and Kachin). Annual malaria incidence was highest in townships with a mean elevation of 500‒600 m and a high variance in elevation (states with both high and low elevation). There was an apparent linear relationship between the mean normalized difference vegetative index and annual P. falciparum incidence (P < 0.05). CONCLUSION: The decreasing trends reflect the significant achievement of malaria control efforts in Myanmar. Prioritizing the allocation of resources to high-risk areas identified in this study can achieve effective disease control.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Plasmodium vivax , Incidence , Myanmar/epidemiology , Malaria/epidemiology , Malaria, Vivax/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum
6.
Trop Med Infect Dis ; 7(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36548697

ABSTRACT

The Greater Mekong Subregion (GMS) is the epicenter of antimalarial drug resistance. We determined in vitro susceptibilities to 11 drugs of culture-adapted Plasmodium falciparum isolates from adjacent areas (Laiza and Muse) along the China−Myanmar border. Parasites from this region were highly resistant to chloroquine and pyrimethamine but relatively sensitive to other antimalarial drugs. Consistently, the Dd2-like pfcrt mutations were fixed or almost fixed in both parasite populations, and new mutations mediating piperaquine resistance were not identified. Similarly, several mutations related to pfdhfr and pfdhps were also highly prevalent. Despite their geographical proximity, malaria parasites from Laiza showed significantly higher in vitro resistance to artemisinin derivatives, naphthoquine, pyronaridine, lumefantrine, and pyrimethamine than parasites from Muse. Likewise, the pfdhfr N51I, pfdhps A581G, pfmrp1 H785N, and pfk13 F446I mutations were significantly more frequent in Laiza than in Muse (p < 0.05). For the pfmdr1 mutations, Y184F was found only in Laiza (70%), whereas F1226Y was identified only in Muse (31.8%). Parasite isolates from Laiza showed a median RSA value of 5.0%, significantly higher than the 2.4% in Muse. Altogether, P. falciparum parasite populations from neighboring regions in the GMS may diverge substantially in their resistance to several antimalarial drugs. This information about different parasite populations will guide antimalarial treatment policies to effectively manage drug resistance during malaria elimination.

7.
Am J Trop Med Hyg ; 107(4_Suppl): 138-151, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228909

ABSTRACT

In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mosquito Vectors , Plasmodium falciparum/genetics
8.
Am J Trop Med Hyg ; 107(4_Suppl): 152-159, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228914

ABSTRACT

The malaria landscape in the Greater Mekong Subregion has experienced drastic changes with the ramp-up of the control efforts, revealing formidable challenges that slowed down the progress toward malaria elimination. Problems such as border malaria and cross-border malaria introduction, multidrug resistance in Plasmodium falciparum, the persistence of Plasmodium vivax, the asymptomatic parasite reservoirs, and insecticide resistance in primary vectors require integrated strategies tailored for individual nations in the region. In recognition of these challenges and the need for research, the Southeast Asian International Center of Excellence for Malaria Research has established a network of researchers and stakeholders and conducted basic and translational research to identify existing and emerging problems and develop new countermeasures. The installation of a comprehensive disease and vector surveillance system at sentinel sites in border areas with the implementation of passive/active case detection and cross-sectional surveys allowed timely detection and management of malaria cases, provided updated knowledge for effective vector control measures, and facilitated the efficacy studies of antimalarials. Incorporating sensitive molecular diagnosis to expose the significance of asymptomatic parasite reservoirs for sustaining transmission helped establish the necessary evidence to guide targeted control to eliminate residual transmission. In addition, this program has developed point-of-care diagnostics to monitor the quality of artemisinin combination therapies, delivering the needed information to the drug regulatory authorities to take measures against falsified and substandard antimalarials. To accelerate malaria elimination, this program has actively engaged with stakeholders of all levels, fostered vertical and horizontal collaborations, and enabled the effective dissemination of research findings.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Cross-Sectional Studies , Humans , Malaria/diagnosis , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum
9.
Parasit Vectors ; 15(1): 371, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253843

ABSTRACT

BACKGROUND: Sexual stage surface antigens are potential targets of transmission-blocking vaccines (TBVs). The gametocyte and gamete surface antigen P230, a leading TBV candidate, is critical for red blood cell binding during exflagellation and subsequent oocyst development. Here, the genetic diversity of Pvs230 was studied in Plasmodium vivax parasite isolates from the China-Myanmar border (CMB) and central Myanmar. METHODS: Plasmodium vivax isolates were collected in clinics from malaria-endemic areas of the CMB (143 samples) and Myanmar (23 samples). The interspecies variable part (IVP, nucleotides 1-807) and interspecies conserved part (ICP, 808-2862) of Pvs230 were amplified by PCR and sequenced. Molecular evolution studies were conducted to evaluate the genetic diversity, signature of selection, population differentiation, haplotype network, and population structure of the study parasite populations and publicly available Pvs230 sequences from six global P. vivax populations. RESULTS: Limited genetic diversity was observed for the CMB (π = 0.002) and Myanmar (π = 0.001) isolates. Most amino acid substitutions were located in the IVP and cysteine-rich domain of Pvs230. Evidence of positive selection was observed for IVP and purifying selection for ICP. Codon-based tests identified specific codons under natural selection in both IVP and ICP. The fixation index (FST) showed low genetic differentiation between East and Southeast Asian populations, with FST ranging from 0.018 to 0.119. The highest FST value (FST = 0.503) was detected between the Turkey and Papua New Guinea populations. A total of 92 haplotypes were identified in global isolates, with the major haplotypes 2 and 9 being the most abundant and circulating in East and Southeast Asia populations. Several detected non-synonymous substitutions were mapped in the predicted structure and B-cell epitopes of Pvs230. CONCLUSIONS: We detected low levels of genetic diversity of Pvs230 in global P. vivax populations. Geographically specific haplotypes were identified for Pvs230. Some mutations are located within a potential B-cell epitope region and need to be considered in future TBV designs.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Antigens, Protozoan , Antigens, Surface , Cysteine , Epitopes, B-Lymphocyte , Genetic Variation , Haplotypes , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Membrane Proteins/genetics , Myanmar , Nucleotides , Protozoan Proteins/genetics , Selection, Genetic , Sequence Analysis, DNA
11.
BMC Infect Dis ; 22(1): 653, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902825

ABSTRACT

BACKGROUND: While national malaria incidence has been declining in Myanmar, some subregions within the nation continue to have high burdens of malaria morbidity and mortality. This study assessed the malaria situation in one of these regions, Banmauk Township, located near the Myanmar-India border. Our goal was to provide a detailed description of the malaria epidemiology in this township and to provide some evidence-based recommendations to formulate a strategy for reaching the national malaria elimination plan. Banmauk consistently has one of the highest malaria burdens in Myanmar. METHODS: With the implementation of strengthened malaria control and surveillance activities after the endorsement of a national malaria elimination plan in 2015, detailed incidence data were obtained for 2016-2018 for Banmauk Township. The data include patient demographics, parasite species, disease severity, and disease outcome. Data were analyzed to identify characteristics, trends, distribution, and risk factors. RESULTS: During 2016-2018, 2,402 malaria cases were reported, with Plasmodium falciparum accounting for 83.4% of infections. Both P. falciparum and P. vivax were transmitted more frequently during the rainy season (May-October). Despite intensified control, the annual parasite incidence rate (API) in 2017 (11.0) almost doubled that in 2016 (6.5). In total, 2.5% (59/2042) of the cases, of which 54 P. falciparum and 5 P. vivax, were complicated cases, resulting in 5 deaths. Malaria morbidity was high in children < 15 years and accounted for 33.4% of all cases and about 47% of the complicated cases. Older age groups and males living with poor transportation conditions were more likely to test positive especially in rainy and cold seasons. Despite the clear seasonality of malaria, severe cases were found among young children even more common in the dry season, when malaria incidence was low. CONCLUSIONS: Despite the declining trend, the malaria burden remained high in Banmauk Township. Our study also documented severe cases and deaths from both falciparum and vivax malaria. P. falciparum remained the predominant parasite species, demanding increased efforts to achieve the goal of elimination of P. falciparum by 2025. As P. falciparum cases decreased, the proportion of cases attributable to P. vivax increased. In order to eliminate malaria, it will likely be important to increasingly target this species as well.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Aged , Child , Child, Preschool , Humans , Malaria/epidemiology , Malaria/parasitology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Male , Myanmar/epidemiology , Plasmodium falciparum , Plasmodium vivax , Risk Factors
12.
Parasit Vectors ; 15(1): 155, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505366

ABSTRACT

BACKGROUND: Myanmar is one of the six countries in the Greater Mekong Subregion (GMS) of Southeast Asia. Malaria vectors comprise many Anopheles species, which vary in abundance and importance in malaria transmission among different geographical locations in the GMS. Information about the species composition, abundance, and insecticide resistance status of vectorial systems in Myanmar is scarce, hindering our efforts to effectively control malaria vectors in this region. METHODS: During October and November 2019, larvae and adult females of Anopheles mosquitoes were collected in three sentinel villages of Banmauk township in northern Myanmar. Adult female mosquitoes collected by cow-baited tent collection (CBTC) and adults reared from field-collected larvae (RFCL) were used to determine mortality rates and knockdown resistance (kdr) against deltamethrin using the standard WHO susceptibility test. Molecular species identification was performed by multiplex PCR and ITS2 PCR, followed by DNA sequencing. The kdr mutation at position 1014 of the voltage-gated sodium channel gene was genotyped by DNA sequencing for all Anopheles species tested. RESULTS: A total of 1596 Anopheles mosquitoes from seven morphologically identified species groups were bioassayed. Confirmed resistance to deltamethrin was detected in the populations of An. barbirostris (s.l.), An. hyrcanus (s.l.), and An. vagus, while possible resistance was detected in An. annularis (s.l.), An. minimus, and An. tessellatus. Anopheles kochi was found susceptible to deltamethrin. Compared to adults collected by CBTC, female adults from RFCL had significantly lower mortality rates in the four species complexes. A total of 1638 individuals from 22 Anopheles species were molecularly identified, with the four most common species being An. dissidens (20.5%) of the Barbirostris group, An. peditaeniatus (19.4%) of the Hyrcanus group, An. aconitus (13.4%) of the Funestus group, and An. nivipes (11.5%) of the Annularis group. The kdr mutation L1014F was only detected in the homozygous state in two An. subpictus (s.l.) specimens and in a heterozygous state in one An. culicifacies (s.l.) specimen. CONCLUSIONS: This study provides updated information about malaria vector species composition and insecticide resistance status in northern Myanmar. The confirmed deltamethrin resistance in multiple species groups constitutes a significant threat to malaria vector control. The lack or low frequency of target-site resistance mutations suggests that other mechanisms are involved in resistance. Continual monitoring of the insecticide resistance of malaria vectors is required for effective vector control and insecticide resistance management.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Cattle , Female , Insecticide Resistance/genetics , Malaria/prevention & control , Mosquito Vectors/genetics , Myanmar
13.
Infection ; 50(3): 681-688, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35034327

ABSTRACT

BACKGROUND: In the Greater Mekong Subregion of Southeast Asia, Plasmodium vivax malaria is endemic and causes significant morbidity. In this study, the efficacy of chloroquine for treating uncomplicated P. vivax malaria at the eastern and western borders of Myanmar was investigated. METHODS: A total of 197 participants with microscopically confirmed P. vivax infection were enrolled from three townships of the southeastern (Thanbyuzayat and Kawthoung) and western (Kyauktaw) borders of Myanmar. Patients were treated with chloroquine according to the national malaria treatment guidelines and followed for 28 days. RESULTS: Among the 197 enrollments, 172 completed the 28-day follow-up. Twelve recurrent P. vivax infections, all occurring in the third and fourth week, were detected, resulting in an overall cumulative rate of recurrence of 4.7% [95% confidence interval (CI) 1.5-7.8]. The incidence rate of recurrence varied among the three sites. In Thanbyuzayat township, no patients had recurrent parasitemia between days 7 and 28. In contrast, Kyauktaw township had a day 28 cumulative incidence rate of recurrence of 7.2% (95% CI 0.6-13.9%) compared to 6.9% (95% CI 0.6-13.2) in Kawthoung township. CONCLUSION: While this study confirmed the relatively high clinical efficacy of chloroquine for treating P. vivax in Myanmar with modest rates of recurrent infections within 28 days of the treatment, it also revealed considerable geographical heterogeneity of chloroquine efficacy, which warrants continuous surveillance efforts.


Subject(s)
Antimalarials , Malaria, Vivax , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Plasmodium vivax
14.
BMC Infect Dis ; 21(1): 1146, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34758727

ABSTRACT

BACKGROUND: Residual malaria is probably an important source for the re-emergence of malaria infection in the elimination era. Assessment to identify the factors influencing residual malaria in high-risk groups is needed to develop evidence-based decisions by stakeholders and policymakers. METHODS: This study was conducted to explore the factors influencing the residual malaria infection among migrant workers in two sentinel sites (endemic vs. pre-elimination areas) in Myanmar using the mixed-model method. RESULTS: A total of 102 migrant respondents (65 in Bamauk and 37 in Shwegyin) were included for the quantitative assessment using pretested questionnaires during household visits. Although 87.3% of them had insecticidal bed nets (ITNs/LLINs), only 68.3% of the migrants in Bamauk and 57.9% in Shwegyin used it regularly. The use of any bed net was high (79.9% in Bamauk vs. 91.0% in Shwegyin). The mean LLINs in their families were 1.64 (95%CI: 1.48-1.81) in Bamauk and 2.89 (95%CI: 2.67-3.11) in Shwegyin. Most of them received no health information for malaria prevention within the last year and their knowledge about malaria was low. Their working nature was a challenge for control measures against malaria in migrants. CONCLUSION: The strategy for distributing LLINs and health promotion activities for mobile/migrant populations should be reviewed, and an appropriate action plan should be developed for the specific migrant group. Moreover, health promotion activities for behavior change communication should be strengthened in the migrant population in Myanmar.


Subject(s)
Insecticide-Treated Bednets , Malaria , Transients and Migrants , Family Characteristics , Humans , Malaria/epidemiology , Malaria/prevention & control , Myanmar/epidemiology
15.
Parasit Vectors ; 14(1): 549, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689796

ABSTRACT

BACKGROUND: Radical cure of the Plasmodium vivax latent liver stage is required to effectively manage vivax malaria. Targeted mass treatment with primaquine may be an effective mechanism for reducing reservoirs of the disease. Since community engagement and high coverage are essential for mass treatment programs, this study aimed to determine the acceptability of mass primaquine treatment in a targeted community in a northern Myanmar township. METHODS: A cross-sectional mixed-methods study was deployed among household leaders in July 2019. Face-to-face interviews using structured questionnaires and standardized qualitative guidelines were conducted to gather information. Descriptive and inferential statistics, including logistic regression models, were applied. RESULTS: Among 609 study respondents, > 90% agreed to participate in an upcoming targeted mass primaquine treatment (TPT) program. Factors contributing to higher odds of acceptability of the program were older age [adjusted odds ratios (aOR): 2.38, 95% confidence intervals (CI) 1.08-8.96], secondary education level (aOR: 3.99, 95% CI 1.12-20.01), having good knowledge of malaria (aOR: 2.12, 95% CI 1.04-4.76), experiencing malaria within the family (aOR: 1.92, 95% CI 1.14-5.13), and believing eliminating malaria from the village is possible (aOR: 2.83, 95% CI 1.07-4.07). Furthermore, 50 community respondents, 6 midwives, and 4 public health staff (grade II) participated in the qualitative component of the study. Many thought that TPT seemed feasible and stressed that high coverage of underserved groups and health education are needed before commencing the activity. CONCLUSIONS: Most respondents agreed to participate in the proposed mass treatment campaign. Older people with secondary education level and those who had experienced malaria within their families were most likely to report willingness to participate. These same individuals may be important in the community engagement process to increase community acceptance of the program.


Subject(s)
Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Mass Drug Administration/psychology , Patient Acceptance of Health Care/psychology , Primaquine/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Disease Eradication , Drug Administration Schedule , Family Characteristics , Female , Humans , Malaria, Vivax/prevention & control , Male , Middle Aged , Myanmar , Plasmodium vivax/drug effects , Recurrence , Surveys and Questionnaires , Young Adult
16.
Infect Dis Poverty ; 10(1): 6, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431057

ABSTRACT

BACKGROUND: Despite major reductions in malaria burden across Myanmar, clusters of the disease continue to persist in specific subregions. This study aimed to assess the predictors of test positivity among people living in Paletwa Township of Chin State, an area of persistently high malaria burden. METHODS: Four villages with the highest malaria incidence from Paletwa Township were purposively selected. The characteristics of 1045 subjects seeking malaria diagnosis from the four assigned village health volunteers from January to December, 2018 were retrospectively analyzed. Their household conditions and surroundings were also recorded using a checklist. Descriptive statistics and logistic regression models were applied to investigate potential associations between individual and household characteristics and malaria diagnosis. RESULTS: In 2017, the Paletwa township presented 20.9% positivity and an annual parasite index of 46.9 cases per 1000 people. Plasmodium falciparum was the predominant species and accounted for more than 80.0% of all infections. Among 1045 people presenting at a clinic with malaria symptoms, 31.1% were diagnosed with malaria. Predictors for test positivity included living in a hut [adjusted odds ratios (a OR): 2.3, 95% confidence intervals (CI): 1.2-4.6], owning farm animals (aOR: 1.7, 95% CI: 1.1-3.6), using non-septic type of toilets (aOR: 1.9, 95% CI: 1.1-8.4), presenting with fever (aOR: 1.9, 95% CI: 1.1-3.0), having a malaria episode within the last year (aOR: 2.9, 95% CI: 1.4-5.8), traveling outside the village in the previous 14 days (aOR: 4.5, 95% CI: 1.5-13.4), and not using bed nets (a OR: 3.4, 95% CI: 2.3-5.1). There were no statistically significant differences by age or gender in this present analysis. CONCLUSIONS: The results from this study, including a high proportion of P. falciparum infections, little difference in age, sex, or occupation, suggest that malaria is a major burden for these study villages. Targeted health education campaigns should be introduced to strengthen synchronous diagnosis-seeking behaviors, tighten treatment adherence, receiving a diagnosis after traveling to endemic regions, and using bed nets properly. We suggest increased surveillance, early diagnosis, and treatment efforts to control the disease and then to consider the local elimination.


Subject(s)
Diagnostic Tests, Routine/methods , Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Early Diagnosis , Family Characteristics , Female , Health Education , Healthy Volunteers , Humans , Incidence , Infant , Logistic Models , Malaria/classification , Male , Myanmar/epidemiology , Retrospective Studies , Risk Factors , Young Adult
17.
BMC Infect Dis ; 20(1): 906, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256616

ABSTRACT

BACKGROUNDS: Primary infection with Toxoplasma gondii during pregnancy can pose serious health problems for the fetus. However, the epidemiological status of toxoplasmosis among reproductive-aged population in Myanmar is largely unknown. Although luciferase immunoprecipitation system (LIPS) assays for serodiagnosis of toxoplasmosis was developed mostly using mouse infection model, had not been tested by using field-derived human samples. METHODS: A total of 251 serum samples were collected from reproductive-aged women, residing in Shwegyin township, Bago region, Myanmar and analyzed with a commercial ELISA kit, as well as in-house LIPS assays. RESULTS: The overall seroprevalence for Toxoplasma gondii infection by the commercial ELISA was 11.5%. No clear risk factor was identified except for being in the younger age group (15-30 years old). Overall, LIPS assays showed low sensitivity when the commercial ELSA was used as a reference test. CONCLUSION: We identified the epidemiological situation of toxoplasmosis in some rural communities in Myanmar. The data obtained here will serve as a primary information for the effort to reduce toxoplasmosis in this region. Although looked promising in the previous experiments with mouse infection model, we found that the reported LIPS procedures need further improvements to increase the sensitivities.


Subject(s)
Immunoprecipitation/methods , Luminescent Measurements/methods , Serologic Tests/methods , Toxoplasma/immunology , Toxoplasmosis/diagnosis , Toxoplasmosis/epidemiology , Adolescent , Adult , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Luciferases , Luminescent Agents , Mice , Middle Aged , Myanmar/epidemiology , Risk Factors , Rural Population , Sensitivity and Specificity , Seroepidemiologic Studies , Toxoplasmosis/blood , Toxoplasmosis/parasitology , Young Adult
18.
Malar J ; 19(1): 281, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32758218

ABSTRACT

BACKGROUND: In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes potentially related to drug resistance in P. vivax populations from the China-Myanmar border area. In addition, this study also wanted to determine whether divergence existed between parasite populations associated with asymptomatic and acute infections. METHODS: A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded by genotyping at msp-3α and msp-3ß genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infections was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, pvdhfr, pvdhps, and pvk12. RESULTS: The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two antifolate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asymptomatic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and double mutations at codons 383 and 553 of pvdhps were found both in asymptomatic and symptomatic infections with similar frequencies. No mutations were found in the pvk12 gene. CONCLUSIONS: Mutations in pvdhfr and pvdhps were prevalent in both symptomatic and asymptomatic P. vivax infections, suggestive of resistance to antifolate drugs. Asymptomatic carriers may act as a silent reservoir sustaining drug-resistant parasite transmission necessitating a rational strategy for malaria elimination in this region.


Subject(s)
Antimalarials/administration & dosage , Drug Resistance/genetics , Genetic Markers , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Asymptomatic Infections , Child , Female , Humans , Male , Membrane Transport Proteins/analysis , Multidrug Resistance-Associated Proteins/analysis , Myanmar , Plasmodium vivax/drug effects , Protozoan Proteins/analysis , Sequence Analysis, DNA , Young Adult
19.
Malar J ; 19(1): 304, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854686

ABSTRACT

BACKGROUND: Currently, artemisinin-based combination therapy (ACT) is the first-line anti-malarial treatment in malaria-endemic areas. However, resistance in Plasmodium falciparum to artemisinin-based combinations emerging in the Greater Mekong Sub-region is a major problem hindering malaria elimination. To continuously monitor the potential spread of ACT-resistant parasites, this study assessed the efficacy of artemether-lumefantrine (AL) for falciparum malaria in western Myanmar. METHODS: Ninety-five patients with malaria symptoms from Paletwa Township, Chin State, Myanmar were screened for P. falciparum infections in 2015. After excluding six patients with a parasite density below 100 or over 150,000/µL, 41 P. falciparum patients were treated with AL and followed for 28 days. Molecular markers associated with resistance to 4-amino-quinoline drugs (pfcrt and pfmdr1), antifolate drugs (pfdhps and pfdhfr) and artemisinin (pfk13) were genotyped to determine the prevalence of mutations associated with anti-malarial drug resistance. RESULTS: For the 41 P. falciparum patients (27 children and 14 adults), the 28-day AL therapeutic efficacy was 100%, but five cases (12.2%) were parasite positive on day 3 by microscopy. For the pfk13 gene, the frequency of NN insert after the position 136 was 100% in the day-3 parasite-positive group as compared to 50.0% in the day-3 parasite-negative group, albeit the difference was not statistically significant (P = 0.113). The pfk13 K189T mutation (10.0%) was found in Myanmar for the first time. The pfcrt K76T and A220S mutations were all fixed in the parasite population. In pfmdr1, the Y184F mutation was present in 23.3% of the parasite population, and found in both day-3 parasite-positive and -negative parasites. The G968A mutation of pfmdr1 gene was first reported in Myanmar. Prevalence of all the mutations in pfdhfr and pfdhps genes assessed was over 70%, with the exception of the pfdhps A581G mutation, which was 3.3%. CONCLUSIONS: AL remained highly efficacious in western Myanmar. Pfk13 mutations associated with artemisinin resistance were not found. The high prevalence of mutations in pfcrt, pfdhfr and pfdhps suggests high-degree resistance to chloroquine and antifolate drugs. The pfmdr1 N86/184F/D1246 haplotype associated with selection by AL in Africa reached > 20% in this study. The detection of > 10% patients who were day-3 parasite-positive after AL treatment emphasizes the necessity of continuously monitoring ACT efficacy in western Myanmar.


Subject(s)
Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/genetics , Adolescent , Adult , Child , Female , Humans , Malaria, Falciparum/prevention & control , Male , Middle Aged , Myanmar , Plasmodium falciparum/drug effects , Young Adult
20.
Lancet Infect Dis ; 20(12): 1470-1480, 2020 12.
Article in English | MEDLINE | ID: mdl-32679084

ABSTRACT

BACKGROUND: The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS: P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS: 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION: Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING: Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Asia, Southeastern/epidemiology , Genetic Markers , Haplotypes , Humans , Molecular Epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...