Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (186)2022 08 01.
Article in English | MEDLINE | ID: mdl-35969091

ABSTRACT

Tissue clearing followed by light-sheet microscopy (LSFM) enables cellular-resolution imaging of intact brain structure, allowing quantitative analysis of structural changes caused by genetic or environmental perturbations. Whole-brain imaging results in more accurate quantification of cells and the study of region-specific differences that may be missed with commonly used microscopy of physically sectioned tissue. Using light-sheet microscopy to image cleared brains greatly increases acquisition speed as compared to confocal microscopy. Although these images produce very large amounts of brain structural data, most computational tools that perform feature quantification in images of cleared tissue are limited to counting sparse cell populations, rather than all nuclei. Here, we demonstrate NuMorph (Nuclear-Based Morphometry), a group of analysis tools, to quantify all nuclei and nuclear markers within annotated regions of a postnatal day 4 (P4) mouse brain after clearing and imaging on a light-sheet microscope. We describe magnetic resonance imaging (MRI) to measure brain volume prior to shrinkage caused by tissue clearing dehydration steps, tissue clearing using the iDISCO+ method, including immunolabeling, followed by light-sheet microscopy using a commercially available platform to image mouse brains at cellular resolution. We then demonstrate this image analysis pipeline using NuMorph, which is used to correct intensity differences, stitch image tiles, align multiple channels, count nuclei, and annotate brain regions through registration to publicly available atlases. We designed this approach using publicly available protocols and software, allowing any researcher with the necessary microscope and computational resources to perform these techniques. These tissue clearing, imaging, and computational tools allow measurement and quantification of the three-dimensional (3D) organization of cell-types in the cortex and should be widely applicable to any wild-type/knockout mouse study design.


Subject(s)
Brain , Imaging, Three-Dimensional , Animals , Animals, Newborn , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Mice , Microscopy, Confocal/methods
2.
Nat Neurosci ; 24(7): 941-953, 2021 07.
Article in English | MEDLINE | ID: mdl-34017130

ABSTRACT

Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active during cortical neurogenesis. However, it remains poorly understood as to how these variants influence gene regulation. To model the functional impact of common genetic variation on the noncoding genome during human cortical development, we performed the assay for transposase accessible chromatin using sequencing (ATAC-seq) and analyzed chromatin accessibility quantitative trait loci (QTL) in cultured human neural progenitor cells and their differentiated neuronal progeny from 87 donors. We identified significant genetic effects on 988/1,839 neuron/progenitor regulatory elements, with highly cell-type and temporally specific effects. A subset (roughly 30%) of chromatin accessibility-QTL were also associated with changes in gene expression. Motif-disrupting alleles of transcriptional activators generally led to decreases in chromatin accessibility, whereas motif-disrupting alleles of repressors led to increases in chromatin accessibility. By integrating cell-type-specific chromatin accessibility-QTL and brain-relevant genome-wide association data, we were able to fine-map and identify regulatory mechanisms underlying noncoding neuropsychiatric disorder risk loci.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Genetic Variation/genetics , Mental Disorders/genetics , Neurons/physiology , Quantitative Trait Loci/genetics , Cell Differentiation/physiology , Chromatin/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Neural Stem Cells/physiology , Neurogenesis/genetics , Regulatory Elements, Transcriptional/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...