Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38841882

ABSTRACT

Myocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF), and thereby regulate cytoskeletal gene expression in response to actin dynamics. MRTFs have also been implicated in transcription of heat shock protein (HSP)-encoding genes in fly ovaries, but the mechanisms remain unclear. Here, we demonstrate that, in mammalian cells, MRTFs are dispensable for gene induction of HSP-encoding genes. However, the widely used small-molecule inhibitors of the MRTF-SRF transcription pathway, derived from CCG-1423, also efficiently inhibit gene transcription of HSP-encoding genes in both fly and mammalian cells in the absence of MRTFs. Quantifying RNA synthesis and RNA polymerase distribution demonstrates that CCG-1423-derived compounds have a genome-wide effect on transcription. Indeed, tracking nascent transcription at nucleotide resolution reveals that CCG-1423-derived compounds reduce RNA polymerase II elongation, and severely dampen the transcriptional response to heat shock. The effects of CCG-1423-derived compounds therefore extend beyond the MRTF-SRF pathway into nascent transcription, opening novel opportunities for their use in transcription research.


Subject(s)
Transcription, Genetic , Animals , Transcription, Genetic/drug effects , RNA Polymerase II/metabolism , RNA/metabolism , RNA/genetics , Mice , Humans , Trans-Activators/metabolism , Trans-Activators/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics
2.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301887

ABSTRACT

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Subject(s)
Actins , Cyclin-Dependent Kinase 9 , Positive Transcriptional Elongation Factor B , Humans , Actins/genetics , Actins/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic
3.
Exp Cell Res ; 420(2): 113356, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36122768

ABSTRACT

Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.


Subject(s)
Actins , Trans-Activators , Actins/genetics , Actins/metabolism , Cell Differentiation/genetics , Gene Expression , Gene Expression Regulation , Plant Extracts , Serum Response Factor/genetics , Serum Response Factor/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
4.
Sci Rep ; 12(1): 2306, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145145

ABSTRACT

Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.


Subject(s)
Cell Nucleus/metabolism , DNA-Binding Proteins/physiology , Gene Expression Regulation/genetics , Membrane Proteins/physiology , Trans-Activators/genetics , Trans-Activators/metabolism , Actins/metabolism , Animals , Cell Movement/genetics , Chromatin , Cytoplasm/metabolism , Cytoskeleton/genetics , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Mice , NIH 3T3 Cells , Protein Binding/genetics , Serum Response Factor/genetics , Serum Response Factor/metabolism , Trans-Activators/physiology , Transcription, Genetic/genetics
5.
Semin Cell Dev Biol ; 102: 105-112, 2020 06.
Article in English | MEDLINE | ID: mdl-31735514

ABSTRACT

Although best known from its functions in the cytoplasm, actin also localizes to the cell nucleus, where it has been linked to many essential functions from regulation of gene expression to maintenance of genomic integrity. While majority of cytoplasmic functions of actin depend on controlled actin polymerization, in the nucleus both actin monomers and filaments have their own specific roles. Actin monomers are core components of several chromatin remodeling and modifying complexes and can also regulate the activity of specific transcription factors, while actin filaments have been linked to DNA damage response and cell cycle progression. Consequently the balance between monomeric and filamentous actin must be precise controlled also in the nucleus, since their effects are dynamically coupled. In this review, we discuss the recent data on how actin dynamics is regulated within the nucleus and how this influences the different nuclear processes dependent on actin.


Subject(s)
Actins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression , Genome/genetics , Animals , Humans
6.
J Cell Sci ; 132(8)2019 04 17.
Article in English | MEDLINE | ID: mdl-30890647

ABSTRACT

In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/chemistry , Cytoskeleton/metabolism , Histone Acetyltransferases/metabolism , RNA Splicing , Adaptor Proteins, Signal Transducing/genetics , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Gene Expression , HeLa Cells , Histone Acetyltransferases/genetics , Humans , Mass Spectrometry , Transcriptional Activation
7.
Nat Commun ; 6: 5978, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25585691

ABSTRACT

Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-ß for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator.


Subject(s)
Active Transport, Cell Nucleus , DEAD-box RNA Helicases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Trans-Activators/metabolism , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , HeLa Cells , Homeostasis , Humans , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Protein Binding , Protein Conformation , RNA/metabolism , beta Karyopherins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...