Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Haematol ; 104(2): 125-137, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31758597

ABSTRACT

INTRODUCTION: Targeting the cell cycle machinery represents a rational therapeutic approach in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Despite substantial response rates, clinical use of the PLK inhibitor volasertib has been hampered by elevated side effects such as neutropenia and infections. OBJECTIVES: The primary objective was to analyse whether a reduced dose of volasertib was able to limit toxic effects on the healthy haematopoiesis while retaining its therapeutic effect. METHODS: Bone marrow mononuclear cells (BMMNCs) of patients with MDS/sAML (n = 73) and healthy controls (n = 28) were treated with volasertib (1 µM to 1 nM) or vehicle control. Short-term viability analysis was performed by flow cytometry after 72 hours. For long-term viability analysis, colony-forming capacity was assessed after 14 days. Protein expression of RIPK3 and MCL-1 was quantified via flow cytometry. RESULTS: Reduced dose levels of volasertib retained high cell death-inducing efficacy in primary human stem and progenitor cells of MDS/sAML patients without affecting healthy haematopoiesis in vitro. Interestingly, volasertib reduced colony-forming capacity and cell survival independent of clinical stage or mutational status. CONCLUSIONS: Volasertib offers a promising therapeutic approach in patients with adverse prognostic profile. RIPK3 and MCL-1 might be potential biomarkers for sensitivity to volasertib treatment.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Hematopoiesis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pteridines/administration & dosage , Adult , Aged , Aged, 80 and over , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Cycle Proteins/metabolism , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/adverse effects , Receptor-Interacting Protein Serine-Threonine Kinases/biosynthesis , Polo-Like Kinase 1
2.
Blood Adv ; 2(23): 3447-3461, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30518537

ABSTRACT

Mesenchymal stromal cells (MSCs) are crucial components of the bone marrow (BM) microenvironment essential for regulating self-renewal, survival, and differentiation of hematopoietic stem/progenitor cells (HSPCs) in the stem cell niche. MSCs are functionally altered in myelodysplastic syndromes (MDS) and exhibit an altered methylome compared with MSCs from healthy controls, thus contributing to disease progression. To determine whether MSCs are amenable to epigenetic therapy and if this affects their function, we examined growth, differentiation, and HSPC-supporting capacity of ex vivo-expanded MSCs from MDS patients in comparison with age-matched healthy controls after direct treatment in vitro with the hypomethylating agent azacitidine (AZA). Strikingly, we find that AZA exerts a direct effect on healthy as well as MDS-derived MSCs such that they favor support of healthy over malignant clonal HSPC expansion in coculture experiments. RNA-sequencing analyses of MSCs identified stromal networks regulated by AZA. Notably, these comprise distinct molecular pathways crucial for HSPC support, foremost extracellular matrix molecules (including collagens) and interferon pathway components. Our study demonstrates that the hypomethylating agent AZA exerts its antileukemic activity in part through a direct effect on the HSPC-supporting BM niche and provides proof of concept for the therapeutic potential of epigenetic treatment of diseased MSCs. In addition, our comprehensive data set of AZA-sensitive gene networks represents a valuable framework to guide future development of targeted epigenetic niche therapy in myeloid malignancies such as MDS and acute myeloid leukemia.


Subject(s)
Azacitidine/pharmacology , Hematopoiesis/drug effects , Adipogenesis/drug effects , Adult , Aged , Aged, 80 and over , Bone Marrow Cells/cytology , Cell Differentiation/drug effects , Cell Survival/drug effects , Female , Gene Regulatory Networks/drug effects , Humans , Immunophenotyping , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Middle Aged , Myelodysplastic Syndromes , Osteogenesis/drug effects , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Young Adult
3.
J Neurosci ; 38(14): 3480-3494, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29507146

ABSTRACT

The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K+ channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1-/- mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K+ channels such as KCa1.1 and KCa2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1-/- mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release.SIGNIFICANCE STATEMENT The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na+ and K+ channels. Specifically, we characterize voltage-gated K+ channel 3.4 (Kv3.4), a presynaptic K+ channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Mossy Fibers, Hippocampal/metabolism , Shaw Potassium Channels/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...