Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625457

ABSTRACT

Supplemental sugar additives for plant tissue culture cause mixotrophic growth, complicating carbohydrate metabolism and photosynthetic relationships. A unique platform to test and model the photosynthetic proficiency and biomass accumulation of micropropagated plantlets was introduced and applied to Cannabis sativa L. (cannabis), an emerging crop with high economic interest. Conventional in vitro systems can hinder the photoautotrophic ability of plantlets due to low light intensity, low vapor pressure deficit, and limited CO2 availability. Though exogenous sucrose is routinely added to improve in vitro growth despite reduced photosynthetic capacity, reliance on sugar as a carbon source can also trigger negative responses that are species-dependent. By increasing photosynthetic activity in vitro, these negative consequences can likely be mitigated, facilitating the production of superior specimens with enhanced survivability. The presented methods use an open-flow/force-ventilated gas exchange system and infrared gas analysis to measure the impact of [CO2], light, and additional factors on in vitro photosynthesis. This system can be used to answer previously overlooked questions regarding the nature of in vitro plant physiology to enhance plant tissue culture and the overall understanding of in vitro processes, facilitating new research methods and idealized protocols for commercial tissue culture.

2.
PLoS One ; 16(8): e0235525, 2021.
Article in English | MEDLINE | ID: mdl-34388148

ABSTRACT

Cannabis sativa is relatively recalcitrant to de novo regeneration, but several studies have reported shoot organogenesis or somatic embryogenesis from non-meristematic tissues. Most report infrequent regeneration rates from these tissues, but a landmark publication from 2010 achieved regeneration from leaf explants with a 96% response rate, producing an average of 12.3 shoots per explant in a single drug-type accession. Despite the importance regeneration plays in plant biotechnology and the renewed interest in this crop the aforementioned protocol has not been used in subsequent papers in the decade since it was published, raising concerns over its reproducibility. Here we attempted to replicate this important Cannabis regeneration study and expand the original scope of the study by testing it across 10 drug-type C. sativa genotypes to assess genotypic variation. In our study, callus was induced in all 10 genotypes but callus growth and appearance substantially differed among cultivars, with the most responsive genotype producing 6-fold more callus than the least responsive. The shoot induction medium failed to induce shoot organogenesis in any of the 10 cultivars tested, instead resulting in necrosis of the calli. The findings of this replication study raise concerns about the replicability of existing methods. However, some details of the protocol could not be replicated due to missing details in the original paper and regulatory issues, which could have impacted the outcome. These results highlight the importance of using multiple genotypes in such studies and providing detailed methods to facilitate replication.


Subject(s)
Cannabis/growth & development , Cannabis/genetics , Regeneration/genetics , Genotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Reproducibility of Results
3.
Sci Rep ; 10(1): 7522, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371880

ABSTRACT

The combination of navigation and robotics in spine surgery has the potential to accurately identify and maintain bone entry position and planned trajectory. The goal of this study was to examine the feasibility, accuracy and efficacy of a new robot-guided system for semi-automated, minimally invasive, pedicle screw placement. A custom robotic arm was integrated into a hybrid operating room (OR) equipped with an augmented reality surgical navigation system (ARSN). The robot was mounted on the OR-table and used to assist in placing Jamshidi needles in 113 pedicles in four cadavers. The ARSN system was used for planning screw paths and directing the robot. The robot arm autonomously aligned with the planned screw trajectory, and the surgeon inserted the Jamshidi needle into the pedicle. Accuracy measurements were performed on verification cone beam computed tomographies with the planned paths superimposed. To provide a clinical grading according to the Gertzbein scale, pedicle screw diameters were simulated on the placed Jamshidi needles. A technical accuracy at bone entry point of 0.48 ± 0.44 mm and 0.68 ± 0.58 mm was achieved in the axial and sagittal views, respectively. The corresponding angular errors were 0.94 ± 0.83° and 0.87 ± 0.82°. The accuracy was statistically superior (p < 0.001) to ARSN without robotic assistance. Simulated pedicle screw grading resulted in a clinical accuracy of 100%. This study demonstrates that the use of a semi-automated surgical robot for pedicle screw placement provides an accuracy well above what is clinically acceptable.


Subject(s)
Robotic Surgical Procedures/methods , Spine/surgery , Aged , Aged, 80 and over , Augmented Reality , Cadaver , Cone-Beam Computed Tomography , Feasibility Studies , Female , Humans , Male , Middle Aged , Operating Rooms , Pedicle Screws , Reproducibility of Results , Robotic Surgical Procedures/instrumentation , Spine/diagnostic imaging
4.
Int J Med Robot ; 16(4): e2108, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32270913

ABSTRACT

BACKGROUND: Minimally invasive spine (MIS) fusion surgery requires image guidance and expert manual dexterity for a successful, efficient, and accurate pedicle screw placement. Operating room (OR)-integrated robotic solution can provide precise assistance to potentially minimize complication rates and facilitate difficult MIS procedures. METHODS: A 5-degrees of freedom robot was designed specifically for a hybrid OR with integrated surgical navigation for guiding pedicle screw pilot holes. The system automatically aligns an instrument following the surgical plan using only instrument tracking feedback. Contrary to commercially available robotic systems, no tracking markers on the robotic arm are required. The system was evaluated in a cadaver study. RESULTS: The mean targeting error (N = 34) was 1.27±0.57 mm and 1.62±0.85°, with 100% of insertions graded as clinically acceptable. CONCLUSIONS: A fully integrated robotic guidance system, including intra-op imaging, planning, and physical guidance with optimized robot design and control, can improve workflow and provide pedicle screw guidance with less than 2 mm targeting error.


Subject(s)
Pedicle Screws , Robotic Surgical Procedures , Robotics , Spinal Fusion , Surgery, Computer-Assisted , Humans , Operating Rooms , Retrospective Studies , Spine/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...