Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 14146, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074890

ABSTRACT

We report on the degradation process by water vapor of hydrogenated amorphous silicon oxynitride (SiON:H) films deposited by plasma-enhanced chemical vapor deposition at low temperature. The stability of the films was investigated as a function of the oxygen content and deposition temperature. Degradation by defects such as pinholes was not observed with transmission electron microscopy. However, we observed that SiON:H film degrades by reacting with water vapor through only interstitial paths and nano-defects. To monitor the degradation process, the atomic composition, mass density, and fully oxidized thickness were measured by using high-resolution Rutherford backscattering spectroscopy and X-ray reflectometry. The film rapidly degraded above an oxygen composition of ~27 at%, below a deposition temperature of ~150 °C, and below an mass density of ~2.15 g/cm3. This trend can be explained by the extents of porosity and percolation channel based on the ring model of the network structure. In the case of a high oxygen composition or low temperature, the SiON:H film becomes more porous because the film consists of network channels of rings with a low energy barrier.

2.
Sci Rep ; 7: 43561, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28252013

ABSTRACT

We demonstrated that a flat band voltage (VFB) shift could be controlled in TiN/(LaO or ZrO)/SiO2 stack structures. The VFB shift described in term of metal diffusion into the TiN film and silicate formation in the inserted (LaO or ZrO)/SiO2 interface layer. The metal doping and silicate formation confirmed by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) line profiling, respectively. The direct work function measurement technique allowed us to make direct estimate of a variety of flat band voltages (VFB). As a function of composition ratio of La or Zr to Ti in the region of a TiN/(LaO or ZrO)/SiO2/Si stack, direct work function modulation driven by La and Zr doping was confirmed with the work functions obtained from the cutoff value of secondary electron emission by auger electron spectroscopy (AES). We also suggested an analytical method to determine the interface dipole via work function depth profiling.

3.
ACS Appl Mater Interfaces ; 8(45): 30980-30984, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27787978

ABSTRACT

To employ Li-based batteries to their full potential in a wide range of energy-storage applications, their capacity and performance stability must be improved. Si is a viable anode material for Li-based batteries in electric vehicles due to its high theoretical capacity and good economic feasibility. However, it suffers from physical and chemical degradation, leading to unstable electrochemical performance and preventing its incorporation in new Li-based battery systems. Herein, we applied a poly(vinyl alcohol)-PO4 protective coating for Si-graphite anodes and confirmed an improvement in the electrochemical performance. The experimental results revealed that the polymer acts as a binder to alleviate the pulverization of the electrode. Furthermore, the oxide coating reduces the loss of Li2O, which has high ionic conductivity, during operation, resulting in the formation of a stable solid electrolyte interphase. Our findings suggest that a stable and ion-conducting anode/interphase can be developed by applying an oxide and polymer coating in combined approach. Therefore, this study is expected to provide a basis for the further development and design of high-performance Li-based battery systems.

4.
J Nanosci Nanotechnol ; 11(9): 8309-12, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22097574

ABSTRACT

To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...