Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(36): 8462-8472, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32856669

ABSTRACT

The polymer dynamics in concentrated solutions of poly(N-isopropyl acrylamide) (PNIPAM) in D2O/CD3OD mixtures is investigated in the one-phase region. Two polymer concentrations (9 and 25 wt%) and CD3OD contents in the solvent mixture of 0, 10 and 15 vol% are chosen. Temperature-resolved dynamic light scattering (DLS) reveals the collective dynamics. Two modes are observed, namely the fast relaxation of polymer segments within the blobs and the slow collective relaxation of the blobs. As the cloud point is approached, the correlation length related to the fast mode increases with CD3OD content. It features critical scaling behavior, which is consistent with mean-field behavior for the 9 wt% PNIPAM solution in pure D2O and with 3D Ising behavior for all other solutions. While the slow mode is not very strong in the 9 wt% PNIPAM solution in pure D2O, it is significantly more prominent as CD3OD is added and at all CD3OD contents in the 25 wt% solution, which may be attributed to enhanced interaction between the polymers. Neutron spin-echo spectroscopy (NSE) reveals a decay in the intermediate structure factor which indicates a diffusive process. For the polymer concentration of 9 wt%, the diffusion coefficients from NSE are similar to the ones from the fast relaxation observed in DLS. In contrast, they are significantly lower for the solutions having a polymer concentration of 25 wt%, which is attributed to the influence of the dominant large-scale dynamic heterogeneities. To summarize, addition of cosolvent leads to enhanced large-scale heterogeneities, which are reflected in the dynamic behavior at small length scales.

2.
J Phys Chem B ; 122(9): 2655-2668, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29420029

ABSTRACT

The thermoresponsive behavior of two diblock copolymers PS- b-PNIPAM and PS- b-PMDEGA, which both comprise a hydrophobic polystyrene (PS) block but different thermoresponsive blocks, also differing in length, poly( N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA), respectively, was comparatively investigated in a wide temperature range. Concentrated aqueous solutions containing 25 wt % polymer were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). DSC measurements show that, during the demixing phase transition, the hydration number per oligo(ethylene glycol) side chain in the PS- b-PMDEGA solution decreases rather gradually, even up to 20 °C above the onset of the transition, i.e., the cloud point (CP). In contrast, the PS- b-PNIPAM solution exhibits an abrupt, stepwise dehydration behavior at its CP, indicated by the sharp, narrow endothermic peak. BDS measurements suggest that the organization of the expelled water during the phase transition and the subsequent evolution of the micellar aggregates are different for the two copolymers. In the PS- b-PMDEGA solution, the long-range charge transport process changes significantly at its CP and strong interfacial polarization processes appear, probably due to charge accumulation at the interfaces between the micellar aggregates and the aqueous medium. On the contrary, in the PS- b-PNIPAM solution, the phase transition has only a marginal effect on the long-range conduction process and is accompanied by a reduction in the high-frequency (1 MHz) dielectric permittivity, ε'. The latter effect is attributed to the reduced polarization strength of local chain modes due to an enhancement of intra- and interchain hydrogen bonds (HBs) in the polymer-rich phase during the water detaching process. Surprisingly, our BDS measurements indicate that prior to both the demixing and remixing processes the local chain mobility increases temporally. Our dielectric studies suggest that for PS- b-PNIPAM the water detaching process initiates a few degrees below CP and that the local chain mobility and intra- and/or interchain HBs of the PNIPAM blocks may control its thermoresponsive behavior. Dielectric "jump" experiments show that the kinetics of micellar aggregation in the PS- b-PMDEGA solution is slower than that in the PS- b-PNIPAM solution and is independent of the target temperature within the two-phase region. From the experimental point of view, it is shown that the dielectric susceptibility, especially, the dielectric permittivity, ε', is a well-suited probe for monitoring both the reversible changes in the molecular dipolar bond polarizability and the long-range interfacial polarization at the phase transition.

3.
Mol Pharm ; 13(11): 3945-3954, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27607892

ABSTRACT

Subunit vaccines typically show insufficient immunogenicity. To address this issue, we developed a novel self-adjuvanting particulate carrier system based upon the lipids phytantriol (Phy) and mannide monooleate (MaMo). Phy is a lipid known to form nonlamellar phases in fully hydrated systems, whereas MaMo has been found to promote immune responses in emulsion form. A bulk phase composition of Phy/MaMo (14 wt %) showed hexagonal (HII) phase behavior over a practical temperature range (including room and body temperature), and was therefore used for particle development. Hexosomes stabilized with different concentrations of either poloxamer 407, Myrj 59, or Pluronic F108 were successfully prepared. To demonstrate the versatile nature of these systems, the particles were further modified with either positively or negatively charged lipids and loaded with model antigens, while maintaining the HII structure. These hexosomes are structurally robust and amenable to customization, rendering them suitable as antigen delivery carriers.


Subject(s)
Drug Carriers/chemistry , Vaccines/chemistry , Cryoelectron Microscopy , Dynamic Light Scattering , Fatty Alcohols/chemistry , Liquid Crystals/chemistry , Liquid Crystals/ultrastructure , Mannitol/analogs & derivatives , Mannitol/chemistry , Oleic Acids/chemistry , Particle Size
4.
J Phys Chem B ; 120(20): 4679-88, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27187897

ABSTRACT

The solvent dynamics of concentrated solutions of poly(N-isopropylacrylamide) (PNIPAM, 25 wt %) in water/methanol mixtures (85:15 v/v) are measured with the aim of shedding light onto the cononsolvency effect. Quasi-elastic neutron scattering (QENS) with contrast variation has been carried out at temperatures below and above the cloud point by using in the first set of experiments the mixture H2O:d-MeOD (d-MeOD denotes fully deuterated methanol) as a solvent and in the second set of experiments the mixture D2O:MeOH (MeOH denotes methanol). As a reference, bulk H2O, bulk MeOH and the mixtures H2O:d-MeOD and D2O:MeOH (both 85:15 v/v) have been investigated as well. In the PNIPAM solution in H2O:d-MeOD, two water populations are identified, namely strongly and less strongly arrested water. At the cloud point, the former is partially released from PNIPAM. The diffusion coefficient of the latter one is similar to the one in the water/methanol mixture, and its residence time decreases at the cloud point. The PNIPAM solution in D2O:MeOH reveals similar dynamics to the one in H2O:d-MeOD which may reflect that the dynamics of MeOH near the PNIPAM chain is similar to the one of H2O. The similarity may, however, partially be due to H/D exchange between D2O and MeOH. In both PNIPAM solutions, the mean-square displacement of the PNIPAM chain decreases gradually above the cloud point.

5.
Macromol Rapid Commun ; 37(5): 420-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26776153

ABSTRACT

The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems.


Subject(s)
Acrylic Resins/chemistry , Ethanol/chemistry , Flocculation , Methanol/chemistry , Neutron Diffraction , Scattering, Small Angle , Solubility , Temperature , Water/chemistry
6.
Macromolecules ; 47(16): 5711-5718, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25197146

ABSTRACT

The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP-ß, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be ß = -0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed.

7.
Macromol Rapid Commun ; 35(18): 1622-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25159458

ABSTRACT

The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS) after spin-coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as-prepared binary blend thin films feature mainly perpendicular lamellae in a one-phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well-defined macrophase-separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk.


Subject(s)
Butadienes/chemistry , Elastomers/chemistry , Membranes, Artificial , Nanostructures/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Gases/chemistry , Microscopy, Atomic Force , Molecular Weight , Scattering, Small Angle , Solvents/chemistry , X-Ray Diffraction
8.
J Phys Chem B ; 118(15): 4253-60, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24666206

ABSTRACT

For aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions, a structural instability leads to the collapse and aggregation of the macromolecules at the temperature-induced demixing transition. The accompanying cooperative dehydration of the PNIPAM chains is known to play a crucial role in this phase separation. We elucidate the impact of partial dehydration of PNIPAM on the volume changes related to the phase separation of dilute to concentrated PNIPAM solutions. Quasi-elastic neutron scattering enables us to directly follow the isotropic jump diffusion behavior of the hydration water and the almost freely diffusing water. As the hydration number decreases from 8 to 2 for the demixing 25 mass % PNIPAM solution, only a partial dehydration of the PNIPAM chains occurs. Dilatation studies reveal that the transition-induced volume changes depend in a remarkable manner on the PNIPAM concentration of the solutions. The excess volume per mole of H2O molecules expelled from the solvation layers of PNIPAM during phase separation probably strongly increases from dilute to concentrated PNIPAM solutions. This finding is qualitatively related to the immense strain-softening previously observed for demixing PNIPAM solutions.


Subject(s)
Acrylic Resins/chemistry , Dehydration , Molecular Structure , Phase Transition , Solutions , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...