Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 5(12): e2100868, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34928018

ABSTRACT

Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.

2.
ACS Nano ; 13(11): 12996-13005, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31633907

ABSTRACT

Understanding and controlling the formation of nanoparticles at the surface of functional oxide supports is critical for tuning activity and stability for catalytic and energy conversion applications. Here, we use a latest generation environmental transmission electron microscope to follow the exsolution of individual nanoparticles at the surface of perovskite oxides, with ultrahigh spatial and temporal resolution. Qualitative and quantitative analysis of the data reveals the atomic scale processes that underpin the formation of the socketed, strain-inducing interface that confers exsolved particles their exceptional stability and reactivity. This insight also enabled us to discover that the shape of exsolved particles can be controlled by changing the atmosphere in which exsolution is carried out, and additionally, this could also produce intriguing heterostructures consisting of metal-metal oxide coupled nanoparticles. Our results not only provide insight into the in situ formation of nanoparticles but also demonstrate the tailoring of nanostructures and nanointerfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...