Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 294, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025836

ABSTRACT

This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.


Subject(s)
Hypothalamo-Hypophyseal System , Panic Disorder , Humans , Panic Disorder/genetics , Panic Disorder/metabolism , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Orexins/metabolism , Orexins/genetics , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic
2.
Front Psychiatry ; 14: 957515, 2023.
Article in English | MEDLINE | ID: mdl-36793941

ABSTRACT

The current narrative review summarizes and examines several theories of panic disorder (PD) including biological theories, encompassing neurochemical factors, metabolic and genetic theories, respiratory and hyperventilation theories and cognitive theory. Biological theories have informed the development of psychopharmacological treatments; however, they may be limited in their utility given the efficacy of psychological treatments. In particular, behavioral and, more recently, cognitive models have garnered support due to the efficacy of cognitive-behavior therapy (CBT) in treating PD. The role of combination treatments has been found to be superior in the treatment of PD in particular cases, lending support for the need for an integrated approach and model for PD given that the etiology of PD is complex and multifactorial.

3.
Front Psychiatry ; 12: 784884, 2021.
Article in English | MEDLINE | ID: mdl-34912254

ABSTRACT

Increased CO2 sensitivity is common in panic disorder (PD) patients. Free divers who are known for their exceptional breathing control have lower CO2 sensitivity due to training effects. This study aimed to investigate the immediate effects of cold facial immersion (CFI), breath holding and CO2 challenges on panic symptoms. Healthy participants and patients with PD were subjected to four experimental conditions in a randomly assigned order. The four conditions were (a) breath-holding (BH), (b) CFI for 30 s, (c) CO2 challenge, and (d) CO2 challenge followed by CFI. Participants completed a battery of psychological measures, and physiological data (heart rate and respiration rate) were collected following each experimental condition. Participants with PD were unable to hold their breath for as long as normal controls; however, this finding was not significant, potentially due to a small sample size. Significant reductions in both physiological and cognitive symptoms of panic were noted in the clinical group following the CFI task. As hypothesized, the CFI task exerted demonstrable anxiolytic effects in the clinical group in this study by reducing heart rate significantly and lessening self-reported symptoms of anxiety and panic. This outcome demonstrates the promise of the CFI task for clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...