Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 8763, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472049

ABSTRACT

Bacteria of Lactobacillus sp. are very useful to humans. However, the biology and genomic diversity of their (bacterio)phage enemies remains understudied. Knowledge on Lactobacillus phage diversity should broaden to develop efficient phage control strategies. To this end, organic waste samples were screened for phages against two wine-related Lactobacillus plantarum strains. Isolates were shotgun sequenced and compared against the phage database and each other by phylogenetics and comparative genomics. The new isolates had only three distant relatives from the database, but displayed a high overall degree of genomic similarity amongst them. The latter allowed for the use of one isolate as a representative to conduct transmission electron microscopy and structural protein sequencing, and to study phage adsorption and growth kinetics. The microscopy and proteomics tests confirmed the observed diversity of the new isolates and supported their classification to the family Siphoviridae and the proposal of the new phage genus "Silenusvirus".


Subject(s)
Bacteriophages/isolation & purification , Lactobacillus plantarum/virology , Adsorption , Bacteriolysis , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/ultrastructure , DNA, Viral/genetics , Denmark , Genome, Viral , Microscopy, Electron , Phylogeny , Species Specificity , Viral Plaque Assay , Waste Disposal Facilities , Wine/microbiology
2.
Sci Rep ; 10(1): 681, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959791

ABSTRACT

Winemakers have long used copper as a conventional fungicide treatment on grapevine and only recently, the use of biocontrol agents depicted a promising alternative. Most of the studies that investigate the impact of fungicide treatments, focus on specific pathogenic microbes. In the present work instead, a field experiment conducted in South Africa shows the seasonal microbial change occurring on grapevine leaves, periodically treated with two different fungicide treatments: copper sulphate and Lactobacillus plantarum MW-1. In this work, NGS data were combined with strain-specific and community qPCRs to reveal the shift of the microbial communities throughout the growing season and highlight the impact of fungicides on the microbiota. Only the family of Lactobacillaceae systematically changed between treatments, while the bacterial community remained relatively stable over time. MW-1 was exclusively detected on biocontrol-sprayed leaves. Conversely, the fungal community was largely shaped by sampling time, underlining the succession of different dominant taxa over the months. Between treatments, only a few fungal taxa appeared to change significantly and the fungal load was also comparable. Monitoring the dynamics of the microbial community under different fungicide treatments may advise the best timing to apply treatments to the plants, toward the realization of more sustainable agricultural practices.


Subject(s)
Agriculture/methods , Copper Sulfate/pharmacology , Fungicides, Industrial/pharmacology , Lactobacillus plantarum/drug effects , Mycobiome/drug effects , Plant Leaves/microbiology , Vitis/microbiology , Seasons , South Africa
3.
Viruses ; 11(7)2019 07 04.
Article in English | MEDLINE | ID: mdl-31277436

ABSTRACT

Lactobacillus plantarum is a bacterium with probiotic properties and promising applications in the food industry and agriculture. So far, bacteriophages of this bacterium have been moderately addressed. We examined the diversity of five new L. plantarum phages via whole genome shotgun sequencing and in silico protein predictions. Moreover, we looked into their phylogeny and their potential genomic similarities to other complete phage genome records through extensive nucleotide and protein comparisons. These analyses revealed a high degree of similarity among the five phages, which extended to the vast majority of predicted virion-associated proteins. Based on these, we selected one of the phages as a representative and performed transmission electron microscopy and structural protein sequencing tests. Overall, the results suggested that the five phages belong to the family Myoviridae, they have a long genome of 137,973-141,344 bp, a G/C content of 36.3-36.6% that is quite distinct from their host's, and surprisingly, 7 to 15 tRNAs. Only an average 41/174 of their predicted genes were assigned a function. The comparative analyses unraveled considerable genetic diversity for the five L. plantarum phages in this study. Hence, the new genus "Semelevirus" was proposed, comprising exclusively of the five phages. This novel lineage of Lactobacillus phages provides further insight into the genetic heterogeneity of phages infecting Lactobacillus sp. The five new Lactobacillus phages have potential value for the development of more robust starters through, for example, the selection of mutants insensitive to phage infections. The five phages could also form part of phage cocktails, which producers would apply in different stages of L. plantarum fermentations in order to create a range of organoleptic outputs.


Subject(s)
Bacteriophages/classification , Bacteriophages/isolation & purification , Lactobacillus plantarum/virology , Lactobacillus/virology , Myoviridae/classification , Myoviridae/isolation & purification , Phylogeny , Bacteriophages/genetics , Bacteriophages/ultrastructure , Base Composition , DNA Packaging , Genome, Viral , Genomics/methods , Microscopy, Electron, Transmission , Myoviridae/genetics , Myoviridae/ultrastructure , Sequence Analysis, DNA , Viral Structural Proteins/isolation & purification
4.
Front Microbiol ; 9: 2141, 2018.
Article in English | MEDLINE | ID: mdl-30258423

ABSTRACT

Xylella fastidiosa is a notorious plant pathogenic bacterium that represents a threat to crops worldwide. Its subspecies, Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease of grapevines. Pierce's disease has presented a serious challenge for the grapevine industry in the United States and turned into an epidemic in Southern California due to the invasion of the insect vector Homalodisca vitripennis. In an attempt to minimize the effects of Xylella fastidiosa subsp. fastidiosa in vineyards, various studies have been developing and testing strategies to prevent the occurrence of Pierce's disease, i.e., prophylactic strategies. Research has also been undertaken to investigate therapeutic strategies to cure vines infected by Xylella fastidiosa subsp. fastidiosa. This report explicitly reviews all the strategies published to date and specifies their current status. Furthermore, an epidemiological model of Xylella fastidiosa subsp. fastidiosa is proposed and key parameters for the spread of Pierce's disease deciphered in a sensitivity analysis of all model parameters. Based on these results, it is concluded that future studies should prioritize therapeutic strategies, while investments should only be made in prophylactic strategies that have demonstrated promising results in vineyards.

5.
PeerJ ; 3: e1193, 2015.
Article in English | MEDLINE | ID: mdl-26312184

ABSTRACT

Silene ciliata Pourr. (Caryophyllaceae) is a species with a highly disjunct distribution which inhabits the alpine mountains of the Mediterranean Basin. We investigated the phylogeny and phylogeography of the species to (a) clarify the long-suggested division of S. ciliata into two subspecies, (b) evaluate its phylogenetic origin and (c) assess whether the species' diversification patterns were affected by the Mediterranean relief. For this purpose, we collected DNA from 25 populations of the species that inhabit the mountains of Portugal, Spain, France, Italy, former Yugoslav Republic of Macedonia, Bulgaria and Greece and studied the plastid regions rbcL, rps16 and trnL. Major intraspecific variation was supported by all analyses, while the possibility of the existence of more varieties or subspecies was not favoured. Plastid DNA (cpDNA) evidence was in accordance with the division of S. ciliata into the two subspecies, one spreading west (Iberian Peninsula and Central Massif) and the other east of the Alps region (Italian and Balkan Peninsula). This study proposes that the species' geographically disconnected distribution has probably derived from vicariance processes and from the Alps acting as a barrier to the species' dispersal. The monophyletic origin of the species is highly supported. cpDNA patterns were shown independent of the chromosome evolution in the populations and could have resulted from a combination of geographic factors providing links and barriers, climatic adversities and evolutionary processes that took place during Quaternary glaciations.

SELECTION OF CITATIONS
SEARCH DETAIL
...