Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(8): e202303524, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37965774

ABSTRACT

Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti3 C2 Tx MXene (RuCo-Ti3 C2 Tx ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti3 C2 Tx not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.8 mV dec-1 in 0.5 M H2 SO4 and 52 mV, 38.7 mV dec-1 in 1 M KOH), but also good oxygen evolution reaction (OER) performance in an alkaline electrolyte (266 mV, 111.1 mV dec-1 in 1 M KOH). The assembled RuCo-Ti3 C2 Tx ||RuCo-Ti3 C2 Tx electrolyzer requires a lower potential (1.56 V) than does the Pt/C||RuO2 electrolyzer at 10 mA cm-2 . A boosted catalytic HER activity from immobilizing the RuCo nanoalloys on MXene was unveiled by density functional theory calculations. This study provides a feasible and efficient strategy for developing MXene-based catalysts for overall water splitting.

2.
J Colloid Interface Sci ; 633: 53-59, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36434935

ABSTRACT

An electrochemical nitrogen reduction reaction (ENRR) is considered a promising alternative for the traditional Haber-Bosch process. In this study, we present a method for improving the ENRR by controlling the wettability of the catalyst surface, suppressing the hydrogen evolution reaction (HER) while facilitating N2 adsorption. Reduced-graphene oxide (rGO) with a hydrophobic surface property and a contact angle (C.A.) of 59° was synthesized through a high-density atmospheric plasma deposition. Two other hydrophilic and superhydrophobic surfaces with a C.A. of 15° and 150° were developed through additional argon plasma and heat treatment of as-deposited rGO, respectively. The ENRR results showed that the ammonia yield and Faradaic efficiency tended to increase with increasing hydrophobicity. Electrochemical measurements reveal that superhydrophobic rGO achieves a higher Faradaic efficiency (5.73 %) at -0.1 V (vs RHE) and a higher NH3 yield (9.77 µg h-1 cm-2) at -0.4 V (vs RHE) in a 0.1 M KOH electrolyte. In addition, the computational fluid dynamics simulation confirmed that the amount of time the N2 gas remains on the surface could increase by improving the hydrophobicity of the catalytic surface. This study inspires the development of the rGO electrocatalyst through surface wettability modification for boosting ammonia electrosynthesis.


Subject(s)
Ammonia , Graphite , Wettability , Nitrogen
3.
Sci Rep ; 5: 11032, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067060

ABSTRACT

Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...