Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38744304

ABSTRACT

Objective.Automatic treatment planning of radiation therapy (RT) is desired to ensure plan quality, improve planning efficiency, and reduce human errors. We have proposed an Intelligent Automatic Treatment Planning framework with a virtual treatment planner (VTP), an artificial intelligence robot built using deep reinforcement learning, autonomously operating a treatment planning system (TPS). This study extends our previous successes in relatively simple prostate cancer RT planning to head-and-neck (H&N) cancer, a more challenging context even for human planners due to multiple prescription levels, proximity of targets to critical organs, and tight dosimetric constraints.Approach.We integrated VTP with a real clinical TPS to establish a fully automated planning workflow guided by VTP. This integration allowed direct model training and evaluation using the clinical TPS. We designed the VTP network structure to approach the decision-making process in RT planning in a hierarchical manner that mirrors human planners. The VTP network was trained via theQ-learning framework. To assess the effectiveness of VTP, we conducted a prospective evaluation in the 2023 Planning Challenge organized by the American Association of Medical Dosimetrists (AAMD). We extended our evaluation to include 20 clinical H&N cancer patients, comparing the plans generated by VTP against their clinical plans.Main results.In the prospective evaluation for the AAMD Planning Challenge, VTP achieved a plan score of 139.08 in the initial phase evaluating plan quality, and 15 min of planning time with the first place ranking in the adaptive phase competing for planning efficiency while meeting all plan quality requirements. For clinical cases, VTP-generated plans achieved an average VTP score of125.33±11.12, which outperformed the corresponding clinical plans with an average score of117.76±13.56.Significance.We successfully integrated VTP with the clinical TPS to achieve a fully automated treatment planning workflow. The compelling performance of VTP demonstrated its potential in automating H&N cancer RT planning.


Subject(s)
Automation , Head and Neck Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Artificial Intelligence , Radiotherapy Dosage
2.
Radiother Oncol ; 184: 109685, 2023 07.
Article in English | MEDLINE | ID: mdl-37120103

ABSTRACT

PURPOSE: We previously developed a virtual treatment planner (VTP), an artificial intelligence robot, operating a treatment planning system (TPS). Using deep reinforcement learning guided by human knowledge, we trained the VTP to autonomously adjust relevant parameters in treatment plan optimization, similar to a human planner, to generate high-quality plans for prostate cancer stereotactic body radiation therapy (SBRT). This study describes the clinical implementation and evaluation of VTP. MATERIALS AND METHODS: We integrate VTP with Eclipse TPS using scripting Application Programming Interface. VTP observes dose-volume histograms of relevant structures, decides how to adjust dosimetric constraints, including doses, volumes, and weighting factors, and applies the adjustments to the TPS interface to launch the optimization engine. This process continues until a high-quality plan is achieved. We evaluated VTP's performance using the prostate SBRT case from the 2016 American Association of Medical Dosimetrist/Radiosurgery Society plan study with its plan scoring system, and compared to human-generated plans submitted to the challenge. Using the same scoring system, we also compared the plan quality of 36 prostate SBRT cases (20 planned with IMRT and 16 planned with VMAT) treated at our institution for both VTP and human-generated plans. RESULTS: In the plan study case, VTP achieved a score of 142.1/150.0, ranking the third in the competition (median 134.6). For the clinical cases, VTP achieved 110.6 ± 6.5 for 20 IMRT plans and 126.2 ± 4.7 for 16 VMAT plans, similar to scores of human-generated plans with 110.4 ± 7.0 for IMRT plans and 125.4 ± 4.4 for VMAT plans. The workflow, plan quality and planning time of VTP were reviewed to be satisfactory by experienced physicists. CONCLUSION: We successfully implemented VTP to operate a TPS for autonomous human-like treatment planning for prostate SBRT.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Robotics , Male , Humans , Artificial Intelligence , Radiotherapy Planning, Computer-Assisted , Radiotherapy Dosage , Prostatic Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...