Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26107-26120, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725264

ABSTRACT

The slow anodic oxygen evolution reaction (OER) significantly limits electrocatalytic water splitting for hydrogen production. We proposed the electrocatalyst for glucose oxidation by Ta-doping NiFe LDH nanosheets to simultaneously obtain glucaric acid (GRA) and hydrogen gas as a useful byproduct. Superior glucose oxidation reaction (GOR) activity is demonstrated by the optimized Ta-NiFe LDH, which has a low overpotential of 192 mV, allowing for a small Tafel slope of 70 mV dec-1 and a current density of 50 mA cm-2. The Ta NiFe LDH-oxidized glucose to GRA with a 72.94% yield and 64.3% Faradaic efficiency at 1.45 VRHE. Herein, we report the Ta NiFe LDH/NF electrode for the GOR&hydrogen evolution reaction (HER), which exhibits a cell voltage of 1.62 V to reach a current density of 10 mA cm-2, which is 250 mV lower compared to OER&HER (1.87 V). This study reveals that GOR is an energy-efficient and cost-effective method for producing H2 and valorizing biomass.

2.
Environ Sci Pollut Res Int ; 30(55): 117238-117249, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37864701

ABSTRACT

This study is aimed at utilizing three waste materials, i.e., solid refuse fuel (SRF), tire derived fuel (TDF), and sludge derived fuel (SDF), as eco-friendly alternatives to coal-only combustion in co-firing power plants. The contribution of waste materials is limited to ≤5% in the composition of the mixed fuel (coal + waste materials). Statistical experimental design and response surface methodology are employed to investigate the effect of mixed fuel composition (SRF, TDF, and SDF) on gross calorific value (GCV) and ash fusion temperature (AFT). A quadratic model is developed and statistically verified to apprehend mixed fuel constituents' individual and combined effects on GCV and AFT. Constrained optimization of fuel blend, i.e., GCV >1,250 kcal/kg and AFT >1,200 °C, using the polynomial models projected the fuel-blend containing 95% coal with 3.84% SRF, 0.35% TDF, and 0.81% SDF. The observed GCV of 5,307 kcal/kg and AFT of 1225 °C for the optimized blend were within 1% of the model predicted values, thereby establishing the robustness of the models. The findings from this study can foster sustainable economic development and zero CO2 emission objectives by optimizing the utilization of waste materials without compromising the GCV and AFT of the mixed fuels in coal-fired power plants.


Subject(s)
Coal , Garbage , Coal/analysis , Power Plants , Waste Products/analysis , Temperature , Sewage , Coal Ash
3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373100

ABSTRACT

Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method. In addition, microbial electrosynthesis which utilizes an electroactive bio-film electrode as a catalyst can be considered as another option to reduce CO2. This review highlights the methods which can contribute to the increase in efficiency of carbon dioxide reduction (CO2R) processes through electrode structure with the introduction of various electrolytes such as ionic liquid, sulfate, and bicarbonate electrolytes, with the control of pH and with the control of the operating pressure and temperature of the electrolyzer. It also presents the research status, a fundamental understanding of carbon dioxide reduction reaction (CO2RR) mechanisms, the development of electrochemical CO2R technologies, and challenges and opportunities for future research.


Subject(s)
Acid-Base Imbalance , Carbon Dioxide , Humans , Bicarbonates , Climate Change , Earth, Planet
4.
Environ Sci Pollut Res Int ; 30(2): 4972-4985, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35976587

ABSTRACT

We synthesized iron-coated pine-bark biochar (Fe-PBB) and determined the optimal conditions for removing the antibiotic tetracycline from water. The Fe-PBB was synthesized by depositing iron oxide on pyrolyzed pine-bark waste via a facile co-precipitation method. Characterization (SEM, EDX, and TGA) showed successful deposition of a mass of approximately 27% (w/w) iron on the PBB to synthesize Fe-PBB. Fe-PBB exhibited five times higher adsorption capacity (~ 10 mg/g) for tetracycline compared with PBB. The effects of initial tetracycline concentration, pH, temperature, and Fe-PBB dose on the adsorption removal of tetracycline from water were systematically investigated and optimized using a statistical experimental design and response surface methodology. The empirical relationship between the experimental factors and tetracycline removal was modeled, statistically validated through the analysis of variance, and used to predict the optimal conditions for adsorption removal of tetracycline. We found that ≥ 95% of the tetracycline can be removed at a tetracycline concentration of 1 mg/L, pH of 7, temperature of 50 °C, and a Fe-PBB dose of 2 g/L. The adsorption isotherm modeling study suggests that the adsorption of tetracycline can be attributed to the pore filling phenomenon and multilayer adsorption on the Fe-PBB. A thermodynamics study showed that the adsorption occurs spontaneously with an endothermic reaction.


Subject(s)
Water Pollutants, Chemical , Water , Iron/analysis , Plant Bark/chemistry , Anti-Bacterial Agents/analysis , Tetracycline/chemistry , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
5.
Sci Rep ; 12(1): 8845, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614301

ABSTRACT

Spent tea leaves were functionalized with ascorbic acid to obtain treated tea waste (t-TW) to encourage the adsorption of hexavalent chromium from water. The adsorption removal of Cr(VI) was systematically investigated as a function of four experimental factors: pH (2-12), initial Cr(VI) concentration (1-100 mg L-1), t-TW dosage (0-4 g L-1), and temperature (10-50 °C) by following a statistical experimental design. A central composite rotatable experimental design based on a response surface methodology was used to establish an empirical model that assessed the individual and combined effects of factors on adsorptive removal of Cr(VI). The model was experimentally verified and statistically validated then used to predict optimal adsorption removal of Cr(VI) from water. At optimized conditions, ≥ 99% of 1 mg L-1 Cr(VI) can be removed by 4 g L-1 t-TW at a pH of 9. The adsorptive mechanism was assessed by conducting kinetics and equilibrium studies. The adsorption of Cr(VI) by t-TW followed a pseudo-second-order kinetics model (k2 = 0.001 g mg-1 h-1) and could be described by Langmuir and Temkin isotherms, indicating monolayer adsorption and predominantly adsorbate-adsorbent interactions. The t-TW exhibited a competitive Cr(VI) adsorption capacity of 232.2 mg g-1 compared with the other low-cost adsorbents. These results support the utilization of tea waste for the removal of hazardous metal contaminants from aqueous systems.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Ascorbic Acid , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Plant Leaves/chemistry , Tea , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
6.
Sci Rep ; 11(1): 13146, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162947

ABSTRACT

In this study, we investigated the reduction of toxic Cr(VI) to less toxic Cr(III) using ascorbic acid in various aqueous solutions: deionized water, synthetic soft water, synthetic hard water, and real tap water. The experiments were performed using a statistical experimental design. Response surface methodology (RSM) was used to correlate Cr(VI) reduction (response variable) with experimental parameters such as initial Cr(VI) concentration, humic acid concentration, and ascorbic acid dosage. The empirical model obtained from the experiments was used to estimate and optimize the quantity of ascorbic acid required for the reduction of ≥ 99% Cr(VI) in water. The optimized dosages of ascorbic acid were predicted and experimentally validated for > 99.5% reduction of Cr(VI) (1, 10, 20, and 100 mg/L) in the solutions. Even a solution containing an initial Cr(VI) concentration of 100 mg/L was reduced in concentration ≥ 99.9% with optimal dosage of ascorbic acid (500 mg/L) in the presence of 20 mg/L humic acid. Moreover, the reaction kinetics (kobs-Cr(VI) = 0.71 mM-1 s-1) were sufficient to reduce the ≥ 99.9% Cr(VI) in 20 min. This study sheds new light on the effect of ascorbic acid on Cr(VI) reduction, and provides knowledge fundamental to optimize treatment of Cr(VI) contaminated water to environmentally acceptable endpoints.

7.
Environ Sci Technol ; 52(18): 10647-10656, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30141617

ABSTRACT

Experimental and theoretical studies were conducted to identify the molecular-scale reaction mechanism for Cr(VI) removal by a ferrous phosphate mineral, vivianite. The surface-normalized rate constant for Cr(VI) removal in a vivianite suspension at pH 7 was higher than those obtained for other Fe(II)-containing minerals (i.e., magnetite and pyrite). The highest rate constant was obtained at pH 5, which was 35- and 264-times higher than those obtained at pH 7 and 9, respectively, indicating the dramatic acceleration of removal kinetics with decreasing pH of suspension. The X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectroscopy revealed that Cr(VI) removal involved reduction of Cr(VI) to Cr(III) coupled with oxidation of Fe(II) to Fe(III) on the vivianite surface. In addition, the density functional theory (DFT)-optimized structure of the Cr(VI)-vivianite complex was consistent with that obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy and revealed the transformation of vivianite to amorphous Fe(III) phosphate. We also demonstrated that both Cr(VI) species, HCrO4̅ and CrO42-, can effectively bind to the vivianite surface, particularly on the Fe sites having 6 neighboring Fe molecules with 4 H2O and 2 PO4 moieties. Our results show that Cr(VI) is readily reduced to Cr(III) by vivianite via adsorption and inner-sphere complexation, suggesting that in anoxic iron-phosphate-enriched environments, vivianite may significantly influence the fate and transport of Cr(VI).


Subject(s)
Ferric Compounds , Ferrous Compounds , Chromium , Oxidation-Reduction , Phosphates
8.
J Hazard Mater ; 311: 1-10, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-26950611

ABSTRACT

Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k(obs-PCE)=0.57 h(-1)) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries. PCE was finally transformed to non-chlorinated organic compounds such as ethylene, acetylene, and C3-C4 hydrocarbons by nFeS-Cbl(III) in cement slurries. X-ray photoelectron spectroscopy and PCE degradation by cement components (SiO2, Al2O3, and CaO) revealed that both the reduced Co species in Cbl(III) and the presence of Ca in cement played an important role for the enhanced reductive dechlorination of PCE. The increase in the concentration of Cbl(III) (0.005-0.1 mM), cement ratio (0.05-0.2), and suspension pH (11.5-13.5) accelerated the PCE degradation kinetics by providing more favorable environments for the production of reactive Ca species and reduction of Co species. We also observed that the degradation efficiency of PCE by nFeS-Cbl(III)-cement lasted even at high concentration of PCE. The experimental results obtained from this study could provide fundamental knowledge of redox interactions among nFeS, Cbl(III), and cement, which could significantly enhance reductive dechlorination of chlorinated organics in contaminated natural and engineered environments.

9.
Environ Sci Technol ; 49(2): 1197-205, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25532462

ABSTRACT

In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral­water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(­) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.


Subject(s)
Bentonite/chemistry , Carbon Dioxide/analysis , Water/chemistry , Adsorption , Carbon Dioxide/chemistry , Environment , Kinetics , Minerals/chemistry , Molecular Dynamics Simulation , Salinity , Stochastic Processes , Surface Properties , Thermodynamics
10.
Environ Sci Technol ; 48(12): 6597-603, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24844562

ABSTRACT

In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea < glycine < glucose. Illite and kaolinite (unexpandable clays) barely affected the CO2 hydrate phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.


Subject(s)
Carbon Dioxide/chemistry , Organic Chemicals/chemistry , Phase Transition , Silicates/chemistry , Water/chemistry , Bentonite/chemistry , Environment , Geologic Sediments/chemistry , Kaolin/chemistry , Minerals/chemistry , Sodium/chemistry , Solutions , Solvents/chemistry , Suspensions , Thermodynamics , X-Ray Diffraction
11.
J Environ Manage ; 131: 74-81, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24145013

ABSTRACT

A comprehensive mathematical model developed for this study was used to compare estimates of on-site and off-site CO2 emissions, from conventional and advanced water treatment plants (WTPs). When 200,000 m(3) of raw water at 10 NTU (Nepthelometric Turbidity Unit) was treated by a conventional WTP to 0.1 NTU using aluminum sulfate as a coagulant, the total CO2 emissions were estimated to be 790 ± 228 (on-site) and 69,596 ± 3950 (off-site) kg CO2e/d. The emissions from an advanced WTP containing micro-filtration (MF) membrane and ozone disinfection processes; treating the same raw water to 0.005 NTU, were estimated to be 395 ± 115 (on-site) and 38,197 ± 2922 (off-site) kg CO2e/d. The on-site CO2 emissions from the advanced WTP were half that from the conventional WTP due to much lower use of coagulant. On the other hand, off-site CO2 emissions due to consumption of electricity were 2.14 times higher for the advanced WTP, due to the demands for operation of the MF membrane and ozone disinfection processes. However, the lower use of chemicals in the advanced WTP decreased off-site CO2 emissions related to chemical production and transportation. Overall, total CO2 emissions from the conventional WTP were 1.82 times higher than that from the advanced WTP. A sensitivity analysis was performed for the advanced WTP to suggest tactics for simultaneously reducing CO2 emissions further and enhancing water quality.


Subject(s)
Carbon Dioxide/chemistry , Environmental Monitoring/methods , Models, Theoretical , Water Purification/methods
12.
Environ Sci Technol ; 45(14): 6196-203, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21650151

ABSTRACT

Marine sediment core samples collected from a gas hydrate deposit site (Ulleung Basin (UB), East Sea, Korea) were explored to identify the role of sediment organic matters (SOMs) on the formation of CO(2) hydrate. Two distinct CO(2) hydrate formation regimes (favorable (≤40 min) and unfavorable (>250 min)) were observed from the hydrate formation tests. CO(2) hydrate induction time in UB sediment suspensions was approximately seven times faster than that in UB sediment suspensions without SOMs (baked UB), showing a direct influence of SOMs. Spectrometric and spectroscopic analyses confirmed the existence of different types of SOMs including nonhumic and humic substances in UB sediment samples. We found SOMs with aromatic ring structures in all sediment extracts and SOMs with amine and amide groups and lignin in alkaline extracts. SOMs were extracted from UB sediment core samples (1 g each). Measured CO(2) hydrate induction times were different in baked UB sediment suspensions with different extracts of UB sediments. The experimental results demonstrated that SOMs can play a significant role to accelerate the formation of CO(2) hydrate in UB sediment suspensions, suggesting that the gas hydrate deposit site at UB may be a proper place for CO(2) sequestration as a form of CO(2) hydrate.


Subject(s)
Carbon Dioxide/chemistry , Carbon Sequestration , Geologic Sediments/chemistry , Humic Substances/analysis , Organic Chemicals/analysis , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Republic of Korea , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...