Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(2): 1247-1255, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36563318

ABSTRACT

Endothelin receptor A (ETA), a class A G protein-coupled receptor (GPCR), is a promising tumor-associated antigen due to its close association with the progression and metastasis of many types of cancer, such as colorectal, breast, lung, ovarian, and prostate cancer. However, only small-molecule drugs have been developed as ETA antagonists with anticancer effects. In a previous study, we identified an antibody (AG8) with highly selective binding to human ETA through screening of a human naïve immune antibody library. Although both in vitro and in vivo experiments indicated that the identified AG8 had anticancer effects, there is a need for improvement in biochemical and physicochemical properties such as the ETA binding affinity, thermostability, and productivity. In this study, we engineered the framework regions of AG8 and isolated an anti-ETA antibody (MJF1) exhibiting significantly improved thermostability and ETA binding affinity. Subsequently, our previously isolated PFc29, an Fc variant with an enhanced pH-dependent human FcRn binding profile, was introduced to MJF1, and the resulting Fc-engineered anti-ETA antibody (MJF1-PFc29) inhibited the proliferation of tumor cells comparably to MJF1 and showed a 4.2-fold increased serum half-life in human FcRn transgenic mice. Moreover, MJF1-PFc29 elicited higher tumor growth inhibition in colorectal cancer xenograft mice compared to MJF1. Our results demonstrate that the engineered human anti-ETA antibody MJF1-PFc29 has great therapeutic potential and high antitumor potency against various types of cancers including colorectal cancer.


Subject(s)
Colorectal Neoplasms , Protein Engineering , Male , Humans , Mice , Animals , Receptors, Fc/metabolism , Mice, Transgenic , Receptor, Endothelin A , Colorectal Neoplasms/drug therapy
2.
J Agric Food Chem ; 68(21): 5873-5879, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32367716

ABSTRACT

Oxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from Pseudomonas putida (SB2) for enhanced quantum yield. Of the resulting SB2 variants, KOFP-7 exhibited a significantly improved quantum yield (0.61) compared to other reported engineered FbFPs, which was even higher than that of enhanced GFP (EGFP, 0.60), with significantly enhanced tolerance against a strong reducing agent.


Subject(s)
Bacterial Proteins/chemistry , Dinitrocresols/metabolism , Luminescent Proteins/chemistry , Pseudomonas putida/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fluorescence , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Pseudomonas putida/chemistry , Pseudomonas putida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...