Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 48(24): e2021GL095813, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35847446

ABSTRACT

Recent satellite observations confirm that the Arctic is absorbing more solar radiation now than at the start of this century in response to declining Arctic sea ice and snow covers. Trends in the solar radiation input to Arctic ocean and land surfaces now each exceed interannual variability at the 95% confidence level, although all-sky trends have taken 20%-40% longer to emerge compared to clear-sky conditions. Clouds reduce mean solar absorption and secular trends over both land and ocean, but the effect of clouds on natural variability depends on the underlying surface. While clouds increase the time needed to unambiguously identify trends in nearly all Arctic regions, their masking effects are strongest over oceans. Clouds have extended the time to emergence of already observed clear-sky trends beyond the existing 21 years Clouds and Earth's Radiant Energy System record in half of eight Arctic seas, supporting the need for continued satellite-based radiative flux observations over the Arctic.

2.
J Geophys Res Atmos ; 122(16): 8833-8851, 2017 Aug 27.
Article in English | MEDLINE | ID: mdl-33505826

ABSTRACT

Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 µm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended ~10-15 km horizontally and ~0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 µm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from ~100 l-1 in background air to ~400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.

3.
Nat Commun ; 7: 10266, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26756470

ABSTRACT

The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

SELECTION OF CITATIONS
SEARCH DETAIL
...