Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 171(6): 1831-46, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17991716

ABSTRACT

Hepatitis C virus (HCV) is a major cause of chronic hepatitis that can lead to cirrhosis and hepatocellular carcinoma. To study the effects of HCV protein expression on host cells, we established conditional expression of the full-length open reading frame (ORF) of an infectious cDNA clone of HCV (genotype 1a, H77 strain) in the nontransformed human hepatocyte line cell HH4 using the ecdysone receptor regulatory system. Treatment with the ecdysone analog ponasterone-A induced tightly regulated and dose-dependent full-length HCV ORF expression and properly processed HCV proteins. HCV Core, NS3, and NS5A colocalized in perinuclear regions and associated with the early endosomal protein EEA1. HCV ORF expression caused marked growth inhibition, increased intracellular reactive oxygen species, up-regulation of glutamate-l-cysteine ligase activity, increased glutathione level, and activation of nuclear factor kappaB. Although it was not directly cytotoxic, HCV ORF expression sensitized HH4 cells to Fas at certain concentrations but not to tumor necrosis factor-related apoptosis-inducing ligand. HCV ORF expression in HH4 cells up-regulated genes involved in innate immune response/inflammation and oxidative stress responses and down-regulated cell growth-related genes. Expression of HCV ORF in host cells may contribute to HCV pathogenesis by producing oxidative stress and increasing the expression of genes related to the innate immune response and inflammation.


Subject(s)
Hepacivirus/metabolism , Hepatocytes/immunology , Hepatocytes/virology , Immunity, Innate/genetics , Viral Proteins/metabolism , Apoptosis/genetics , Cell Adhesion/genetics , Cell Cycle/genetics , Cell Proliferation , Cell Survival/genetics , Ecdysterone/analogs & derivatives , Ecdysterone/pharmacology , Extracellular Matrix/genetics , Gene Expression , Glutamate-Cysteine Ligase/metabolism , Hepacivirus/genetics , Hepatocytes/chemistry , Humans , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Open Reading Frames/drug effects , Open Reading Frames/genetics , Oxidative Stress/genetics , Polyproteins/genetics , Polyproteins/metabolism , Transcription, Genetic , Up-Regulation , Viral Proteins/analysis , Viral Proteins/genetics , fas Receptor/pharmacology
2.
Am J Pathol ; 170(2): 478-89, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17255316

ABSTRACT

Understanding the pathogenesis of hepatitis C requires the availability of tissue culture models that sustain viral replication and produce infectious particles. We report on the establishment of a culture system of nontransformed human fetal hepatocytes that supports hepatitis C virus (HCV) replication after transfection with full-length in vitro-transcribed genotype 1a HCV RNA without adaptive mutations and infection with patient sera of diverse HCV genotypes. Transfected and infected hepatocytes expressed HCV core protein and HCV negative-strand RNA. For at least 2 months, transfected or infected cultures released HCV into the medium at high levels and usually with a cyclical pattern. Viral replication had some cytotoxic effects on the cells, which produced interferon (IFN)-beta as a component of the antiviral response. Medium from transfected cells was able to infect naïve cultures in a Transwell system, and the infection was blocked by IFN-alpha and IFN-lambda. Viral particles analyzed by sucrose density centrifugation had a density of 1.17 g/ml. Immunogold labeling with antibody against HCV envelope protein E2 decorated the surface of the viral particles, as visualized by electron microscopy. This culture system may be used to study the responses of nontransformed human hepatocytes to HCV infection, to analyze serum infectivity, and to clone novel HCVs from infected patients.


Subject(s)
Fetus/virology , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatocytes/virology , Virus Replication/physiology , Cells, Cultured , Fetus/metabolism , Fetus/pathology , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Interferons/biosynthesis , RNA, Viral/genetics , RNA, Viral/metabolism , Serum/virology , Transfection
3.
Virol J ; 2: 89, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16324217

ABSTRACT

Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-alpha, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i) alcohol metabolism via ADH and CYP2E1, and ii) cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication. Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink 12.Recombinant interferon alpha (IFN-alpha) therapy produces sustained responses (ie clearance of viremia) in 8-12% of patients with chronic hepatitis C 3. Significant improvements in response rates can be achieved with IFN plus ribavirin combination 456 and pegylated IFN plus ribavirin 78 therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse alcohol have extremely low response rates to IFN therapy 9, but the mechanisms involved have not been clarified.MAPKs play essential roles in regulation of differentiation, cell growth, and responses to cytokines, chemokines and stress. The core element in MAPK signaling consists of a module of 3 kinases, named MKKK, MKK, and MAPK, which sequentially phosphorylate each other 10. Currently, four MAPK modules have been characterized in mammalian cells: Extracellular Regulated Kinases (ERK1 and 2), Stress activated/c-Jun N terminal kinase (SAPK/JNK), p38 MAP kinases, and ERK5 11. Interestingly, ethanol modulates MAPKs 12. However, information on how ethanol affects MAPKs in the context of innate antiviral pathways such as the Jak-Stat pathway in human cells is extremely limited. When IFN-alpha binds its receptor, two receptor associated tyrosine kinases, Tyk2 and Jak1 become activated by phosphorylation, and phosphorylate Stat1 and Stat2 on conserved tyrosine residues 13. Stat1 and Stat2 combine with the IRF-9 protein to form the transcription factor interferon stimulated gene factor 3 (ISGF-3), which binds to the interferon stimulated response element (ISRE), and induces transcription of IFN-alpha-induced genes (ISG). The ISGs mediate the antiviral effects of IFN. The transcriptional activities of Stats 1, 3, 4, 5a, and 5b are also regulated by serine phosphorylation 14. Phosphorylation of Stat1 on a conserved serine amino acid at position 727 (S727), results in maximal transcriptional activity of the ISGF-3 transcription factor complex 15. Although cross-talk between p38 MAPK and the Jak-Stat pathway is essential for IFN-induced ISRE transcription, p38 does not participate in IFN induction of Stat1 serine phosphorylation 1416171819. However, cellular stress responses induced by stimuli such as ultraviolet light do induce p38 MAPK mediated Stat1 S727 phosphorylation 18. In the current report, we postulated that alcohol and HCV proteins modulate MAPK and Jak-Stat pathways in human liver cells. To begin to address these issues, we characterized the interaction of acute ethanol on Jak-Stat and MAPK pathways in Huh7 cells, HCV replicon cells lines, and primary human hepatocytes.


Subject(s)
Ethanol/pharmacology , Hepacivirus/drug effects , Hepacivirus/immunology , Immunity, Innate/drug effects , Liver/drug effects , Liver/virology , Virus Replication/drug effects , Cell Line, Tumor , Enzyme Activation , Gene Expression Regulation, Enzymologic , Hepacivirus/physiology , Humans , Liver/cytology , Liver/immunology , Protein-Tyrosine Kinases/metabolism , RNA, Viral/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Mol Cell Proteomics ; 3(10): 1039-41, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15269248

ABSTRACT

Proteins from human liver carcinoma Huh7 cells, representing transformed liver cells, and cultured primary human fetal hepatocytes (HFH) and human HH4 hepatocytes, representing nontransformed liver cells, were extracted and processed for proteome analysis. Proteins from stimulated cells (interferon-alpha treatment for the Huh7 and HFH cells and induction of hepatitis C virus [HCV] proteins for the HH4 cells) and corresponding control cells were labeled with light and heavy cleavable ICAT reagents, respectively. The labeled samples were combined, trypsinized, and subject to cation-exchange and avidin-affinity chromatographies. The resulting cysteine-containing peptides were analyzed by microcapillary LC-MS/MS. The MS/MS spectra were initially analyzed by searching the human International Protein Index database using the SEQUEST software (1). Subsequently, new statistical algorithms were applied to the collective SEQUEST search results of each experiment. First, the PeptideProphet software (2) was applied to discriminate true assignments of MS/MS spectra to peptide sequences from false assignments, to assign a probability value for each identified peptide, and to compute the sensitivity and error rate for the assignment of spectra to sequences in each experiment. Second, the ProteinProphet software (3) was used to infer the protein identifications and to compute probabilities that a protein had been correctly identified, based on the available peptide sequence evidence. The resulting protein lists were filtered by a ProteinProphet probability score p > or = 0.5, which corresponded to an error rate of less than 5%. A total of 1,296, 1,430, and 1,476 proteins or related protein groups were identified in three subdatasets from the Huh7, HFH, and HH4 cells, respectively. In total, these subdatasets contained 2,486 unique protein identifications from human liver cells. An increase of the threshold to p > or = 0.9 (corresponding to an error rate of less than 1%) resulted in 2,159 unique protein identifications (1,146, 1,235, and 1,318 for the Huh7, HFH, and HH4 cells, respectively).


Subject(s)
Hepatocytes/chemistry , Isotopes/chemistry , Liver Neoplasms/chemistry , Liver/chemistry , Mass Spectrometry/methods , Proteins/analysis , Algorithms , Amino Acid Sequence , Cell Line , Cell Line, Tumor , Chromatography, Liquid , Cysteine/chemistry , Databases, Factual , Humans , Proteins/chemistry , Proteome/analysis , Proteomics , Software
5.
Hepatology ; 38(5): 1095-106, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14578848

ABSTRACT

Cultured human hepatocytes have broad research and clinical applications; however, the difficulties in culturing rodent and human hepatocytes are well known. These problems include the rapid loss of the hepatocytic phenotype in primary culture and the limited replicating capacity of the cultured cells. We describe the establishment of serum-free primary cultures of human fetal hepatocytes (HFHs) that retain hepatocytic morphology and gene expression patterns for several months and maintain sufficient proliferative activity to permit subculturing for at least 2 passages. Initially, HFH cultures contained 2 main cell types that morphologically resembled large and small hepatocytes. The fetal hepatocytes expressed alpha-fetoprotein (AFP), cytokeratin (CK) 19, albumin, and other hepatic proteins. Treatment of the cultures with oncostatin M (OSM) increased cell size and enhanced cell differentiation and formation of bile canaliculi, probably through an effect on hepatocyte nuclear factor (HNF) 4alpha. Approximately 1 month after plating, multiple clusters of very small cells became apparent in the cultures. These cells had very few organelles and are referred to as blast-like cells. Flow cytometric analysis of these cells showed that they express oval cell/stem cell markers such as CD90 (Thy-1), CD34, and OV-6 but do not stain with antibodies to beta(2)-microglobulin. HFH cultures maintained for 9 to 12 months produced grossly visible organoids containing ductular structures that stained for CK18, CK19, and AFP. In conclusion, HFH cultures, which might contain a population of hepatic stem cells, constitute an excellent tool for a variety of studies with human hepatocytes, including the mechanisms of viral infection.


Subject(s)
Cytological Techniques , Hepatocytes/cytology , Hepatocytes/physiology , Liver/embryology , Biomarkers/analysis , Cell Differentiation/drug effects , Cell Division , Cell Survival , Cells, Cultured , Cryopreservation , Fetus/cytology , Growth Inhibitors/pharmacology , Hepatocytes/metabolism , Humans , Oncostatin M , Organoids/cytology , Peptides/pharmacology , Time Factors
6.
J Virol ; 77(11): 6367-75, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12743294

ABSTRACT

Alpha/beta interferons (IFN-alpha/beta) induce potent antiviral and antiproliferative responses and are used to treat a wide range of human diseases, including chronic hepatitis C virus (HCV) infection. However, for reasons that remain poorly understood, many HCV isolates are resistant to IFN therapy. To better understand the nature of the cellular IFN response, we examined the effects of IFN treatment on global gene expression by using several types of human cells, including HeLa cells, liver cell lines, and primary fetal hepatocytes. In response to IFN, 50 of the approximately 4,600 genes examined were consistently induced in each of these cell types and another 60 were induced in a cell type-specific manner. A search for IFN-stimulated response elements (ISREs) in genomic DNA located upstream of IFN-stimulated genes revealed both previously identified and novel putative ISREs. To determine whether HCV can alter IFN-regulated gene expression, we performed microarray analyses on IFN-treated HeLa cells expressing the HCV nonstructural 5A (NS5A) protein and on IFN-treated Huh7 cells containing an HCV subgenomic replicon. NS5A partially blocked the IFN-mediated induction of 14 IFN-stimulated genes, an effect that may play a role in HCV resistance to IFN. This block may occur through repression of ISRE-mediated transcription, since NS5A also inhibited the IFN-mediated induction of a reporter gene driven from an ISRE-containing promoter. In contrast, the HCV replicon had very little effect on IFN-regulated gene expression. These differences highlight the importance of comparing results from multiple model systems when investigating complex phenomena such as the cellular response to IFN and viral mechanisms of IFN resistance.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation/drug effects , Hepacivirus/pathogenicity , Interferons/pharmacology , Proteins/metabolism , Viral Nonstructural Proteins/pharmacology , Cell Line , Computational Biology , HeLa Cells , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatocytes , Humans , Interferon-alpha/pharmacology , Interferon-beta/pharmacology , Oligonucleotide Array Sequence Analysis , Proteins/genetics , Transcription, Genetic , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
7.
Cancer Res ; 63(4): 859-64, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12591738

ABSTRACT

Hepatocellular carcinoma (HCC) is a common primary cancer associated frequently with hepatitis C virus (HCV). To gain insight into the molecular mechanisms of hepatocarcinogenesis, and to identify potential HCC markers, we performed cDNA microarray analysis on surgical liver samples from 20 HCV-infected patients. RNA from individual tumors was compared with RNA isolated from adjacent nontumor tissue that was cirrhotic in all of the cases. Gene expression changes related to cirrhosis were filtered out using experiments in which pooled RNA from HCV-infected cirrhotic liver without tumors was compared with pooled RNA from normal liver. Expression of approximately 13,600 genes was analyzed using the advanced analysis tools of the Rosetta Resolver System. This analysis revealed a set of 50 potential HCC marker genes, which were up-regulated in the majority of the tumors analyzed, much more widely than common clinical markers such as cell proliferation-related genes. This HCC marker set contained several cancer-related genes, including serine/threonine kinase 15 (STK15), which has been implicated in chromosome segregation abnormalities but which has not been linked previously with liver cancer. In addition, a set of genes encoding secreted or plasma proteins was identified, including plasma glutamate carboxypeptidase (PGCP) and two secreted phospholipases A2 (PLA2G13 and PLA2G7). These genes may provide potential HCC serological markers because of their strong up-regulation in more than half of the tumors analyzed. Thus, high throughput methods coupled with high-order statistical analyses may result in the development of new diagnostic tools for liver malignancies.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Hepatitis C/complications , Hepatitis C/genetics , Liver Neoplasms/genetics , Liver Neoplasms/virology , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/metabolism , Cell Division/genetics , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Genetic Markers , Hepacivirus , Hepatitis C/metabolism , Humans , Liver Neoplasms/metabolism , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Phospholipases A/biosynthesis , Phospholipases A/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...