Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(11): 114706, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910622

ABSTRACT

We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

2.
Nat Commun ; 7: 12548, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27562246

ABSTRACT

The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space.

3.
Sci Rep ; 2: 276, 2012.
Article in English | MEDLINE | ID: mdl-22355788

ABSTRACT

The fundamental noise limit of a phase-preserving amplifier at frequency [Formula: see text] is the standard quantum limit [Formula: see text]. In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature [Formula: see text] at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit [Formula: see text] at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, [Formula: see text] at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...