Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 154(2): 285-297, 2018 06.
Article in English | MEDLINE | ID: mdl-29281850

ABSTRACT

The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic® (MVA-BN® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN® backbone.


Subject(s)
CD27 Ligand/immunology , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Immunity , Vaccinia virus , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , CD27 Ligand/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Genetic Vectors/genetics , Genetic Vectors/immunology , Immunization , Mice , Mice, Knockout , Vaccinia virus/genetics , Vaccinia virus/immunology
2.
Oncotarget ; 7(50): 83392-83408, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27825135

ABSTRACT

Triplebodies are antibody-derived recombinant proteins carrying 3 antigen-binding domains in a single polypeptide chain. Triplebody SPM-1 was designed for lysis of CD19-bearing malignant B-lymphoid cells through the engagement of CD16-expressing cytolytic effectors, including NK and γδ T cells.SPM-1 is an optimized version of triplebody ds(19-16-19) and includes humanization, disulfide stabilization and the removal of potentially immunogenic sequences. A three-step chromatographic procedure yielded 1.7 - 5.5 mg of purified, monomeric protein per liter of culture medium. In cytolysis assays with NK cell effectors, SPM-1 mediated potent lysis of cancer-derived B cell lines and primary cells from patients with various B-lymphoid malignancies, which surpassed the ADCC activity of the therapeutic antibody Rituximab. EC50-values ranged from 3 to 86 pM. Finally, in an impedance-based assay, SPM-1 mediated a particularly rapid lysis of CD19-bearing target cells by engaging and activating both primary and expanded human γδ T cells from healthy donors as effectors.These data establish SPM-1 as a useful tool for a kinetic analysis of the cytolytic reactions mediated by γδ T and NK cells and as an agent deserving further development towards clinical use for the treatment of B-lymphoid malignancies.


Subject(s)
Antigens, CD19/immunology , Antineoplastic Agents, Immunological/pharmacology , Cytotoxicity, Immunologic/drug effects , Intraepithelial Lymphocytes/drug effects , Killer Cells, Natural/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphoma, B-Cell/drug therapy , Antineoplastic Agents, Immunological/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Intraepithelial Lymphocytes/immunology , Killer Cells, Natural/immunology , Kinetics , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Rituximab/pharmacology , Tumor Cells, Cultured
3.
J Biol Chem ; 284(34): 22938-51, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19546216

ABSTRACT

Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.


Subject(s)
Drosophila Proteins/physiology , Mitochondria/metabolism , Protein Kinases/physiology , Protein Serine-Threonine Kinases/physiology , Ubiquitin-Protein Ligases/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Cell Line , Cells, Cultured , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , GTP-Binding Proteins/genetics , GTP-Binding Proteins/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/physiology , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin-Protein Ligases/genetics
4.
J Biol Chem ; 283(20): 13771-9, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18362144

ABSTRACT

Loss-of-function mutations in the Parkin gene (PARK2) are responsible for the majority of autosomal recessive Parkinson disease. A growing body of evidence indicates that misfolding and aggregation of Parkin is a major mechanism of Parkin inactivation, accounting for the loss-of-function phenotype of various pathogenic Parkin mutants. Remarkably, wild-type Parkin is also prone to misfolding under certain cellular conditions, suggesting a more general role of Parkin in the pathogenesis of Parkinson disease. We now show that misfolding of Parkin can lead to two phenotypes: the formation of detergent-insoluble, aggregated Parkin, or destabilization of Parkin resulting in an accelerated proteasomal degradation. By combining two pathogenic Parkin mutations, we could demonstrate that destabilization of Parkin is dominant over the formation of detergent-insoluble Parkin aggregates. Furthermore, a comparative analysis with HHARI, an E3 ubiquitin ligase with an RBR domain highly homologous to that of Parkin, revealed that folding of Parkin is specifically dependent on the integrity of the C-terminal domain, but not on the presence of a putative PDZ-binding motif at the extreme C terminus.


Subject(s)
Mutation , Ubiquitin-Protein Ligases/chemistry , Amino Acid Motifs , Animals , Brain/metabolism , Cell Membrane/metabolism , Humans , Mice , Models, Biological , Phenotype , Protein Folding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...