Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Quantum Mater ; 8(1): 48, 2023.
Article in English | MEDLINE | ID: mdl-38666238

ABSTRACT

Fifty years after Anderson's resonating valence-bond proposal, the spin-1/2 triangular-lattice Heisenberg antiferromagnet (TLHAF) remains the ultimate platform to explore highly entangled quantum spin states in proximity to magnetic order. Yb-based delafossites are ideal candidate TLHAF materials, which allow experimental access to the full range of applied in-plane magnetic fields. We perform a systematic neutron scattering study of CsYbSe2, first proving the Heisenberg character of the interactions and quantifying the second-neighbor coupling. We then measure the complex evolution of the excitation spectrum, finding extensive continuum features near the 120°-ordered state, throughout the 1/3-magnetization plateau and beyond this up to saturation. We perform cylinder matrix-product-state (MPS) calculations to obtain an unbiased numerical benchmark for the TLHAF and spectacular agreement with the experimental spectra. The measured and calculated longitudinal spectral functions reflect the role of multi-magnon bound and scattering states. These results provide valuable insight into unconventional field-induced spin excitations in frustrated quantum materials.

2.
Phys Rev Lett ; 129(12): 127201, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179160

ABSTRACT

CrBr_{3} is an excellent realization of the two-dimensional honeycomb ferromagnet, which offers a bosonic equivalent of graphene with Dirac magnons and topological character. We perform inelastic neutron scattering measurements using state-of-the-art instrumentation to update 50-year-old data, thereby enabling a definitive comparison both with recent experimental claims of a significant gap at the Dirac point and with theoretical predictions for thermal magnon renormalization. We demonstrate that CrBr_{3} has next-neighbor J_{2} and J_{3} interactions approximately 5% of J_{1}, an ideal Dirac magnon dispersion at the K point, and the associated signature of isospin winding. The magnon lifetime and the thermal band renormalization show the universal T^{2} evolution expected from an interacting spin-wave treatment, but the measured dispersion lacks the predicted van Hove features, pointing to the need for more sophisticated theoretical analysis.

3.
Nature ; 592(7854): 370-375, 2021 04.
Article in English | MEDLINE | ID: mdl-33854247

ABSTRACT

At the liquid-gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point1, a concept ubiquitous in statistical thermodynamics2. In correlated quantum materials, it was predicted3 and then confirmed experimentally4,5 that a critical point terminates the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions6 have been controlled by pressure7,8, applied magnetic field9,10 and disorder11, but discontinuous quantum phase transitions have received less attention. The geometrically frustrated quantum antiferromagnet SrCu2(BO3)2 constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model12-14 and displays exotic phenomena including magnetization plateaus15, low-lying bound-state excitations16, anomalous thermodynamics17 and discontinuous quantum phase transitions18,19. Here we control both the pressure and the magnetic field applied to SrCu2(BO3)2 to provide evidence of critical-point physics in a pure spin system. We use high-precision specific-heat measurements to demonstrate that, as in water, the pressure-temperature phase diagram has a first-order transition line that separates phases with different local magnetic energy densities, and that terminates at an Ising critical point. We provide a quantitative explanation of our data using recently developed finite-temperature tensor-network methods17,20-22. These results further our understanding of first-order quantum phase transitions in quantum magnetism, with potential applications in materials where anisotropic spin interactions produce the topological properties23,24 that are useful for spintronic applications.

4.
Science ; 366(6470)2019 12 06.
Article in English | MEDLINE | ID: mdl-31806785

ABSTRACT

Tang et al (Research Articles, 10 August 2018, p. 570) report on the properties of Dirac fermions with both on-site and Coulomb interactions. The substantial decrease, up to ~40%, of the Fermi velocity of Dirac fermions with on-site interaction is inconsistent with the numerical data near the Gross-Neveu quantum critical point. This results from an inappropriate finite-size extrapolation.

5.
Phys Rev Lett ; 111(12): 126802, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093288

ABSTRACT

We study the phase diagram of interacting electrons in a dispersionless Chern band as a function of their filling. We find hierarchy multiplets of incompressible states at fillings ν = 1/3, 2/5, 3/7, 4/9, 5/9, 4/7, 3/5 as well as ν = 1/5, 2/7. These are accounted for by an analogy to Haldane pseudopotentials extracted from an analysis of the two-particle problem. Important distinctions to standard fractional quantum Hall physics are striking: in the absence of particle-hole symmetry in a single band, an interaction-induced single-hole dispersion appears, which perturbs and eventually destabilizes incompressible states as ν increases. For this reason, the nature of the state at ν = 2/3 is hard to pin down, while ν = 5/7, 4/5 do not seem to be incompressible in our system.

6.
Phys Rev Lett ; 110(18): 185302, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683213

ABSTRACT

Strongly correlated quantum systems can exhibit exotic behavior controlled by topology. We predict that the ν = 1/2 fractional Chern insulator arises naturally in a two-dimensional array of driven, dipolar-interacting spins. As a specific implementation, we analyze how to prepare and detect synthetic gauge potentials for the rotational excitations of ultracold polar molecules trapped in a deep optical lattice. With the motion of the molecules pinned, under certain conditions, these rotational excitations form a fractional Chern insulating state. We present a detailed experimental blueprint for its realization and demonstrate that the implementation is consistent with near-term capabilities. Prospects for the realization of such phases in solid-state dipolar systems are discussed as are their possible applications.

7.
Phys Rev Lett ; 105(23): 237202, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21231499

ABSTRACT

We study the antiferromagnetic spin-1/2 Heisenberg model on the highly frustrated, three-dimensional, hyperkagome lattice of Na(4)Ir(3)O(8) using a series expansion method. We propose a valence bond crystal with a 72 site unit cell as a ground state that supports many, very low lying, singlet excitations. Low energy spinons and triplons are confined to emergent lower-dimensional motifs. Here, and for analogous kagome and pyrochlore states, we suggest finite temperature signatures, including an Ising transition, in the magnetic specific heat due to a multistep breaking of discrete symmetries.

8.
Phys Rev Lett ; 102(10): 107204, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19392156

ABSTRACT

We measure by inelastic neutron scattering the spin excitation spectra as a function of applied magnetic field in the quantum spin-ladder material (C5H12N)2CuBr4. Discrete magnon modes at low fields in the quantum disordered phase and at high fields in the saturated phase contrast sharply with a spinon continuum at intermediate fields characteristic of the Luttinger-liquid phase. By tuning the magnetic field, we drive the fractionalization of magnons into spinons and, in this deconfined regime, observe both commensurate and incommensurate continua.

9.
Phys Rev Lett ; 100(9): 090401, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352679

ABSTRACT

We show that correlated hopping of triplets, which is often the dominant source of kinetic energy in dimer-based frustrated quantum magnets, produces a remarkably strong tendency to form supersolid phases in a magnetic field. These phases are characterized by simultaneous modulation and ordering of the longitudinal and transverse magnetization, respectively. Using quantum Monte Carlo and a semiclassical approach for an effective hard-core boson model with nearest-neighbor repulsion on a square lattice, we prove, in particular, that a supersolid phase can exist even if the repulsion is not strong enough to stabilize an insulating phase at half-filling. Experimental implications for frustrated quantum antiferromagnets in a magnetic field at zero and finite temperature are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...