Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Skelet Muscle ; 14(1): 8, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671506

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is associated with impaired muscle regeneration, progressive muscle weakness, damage, and wasting. While the cause of DMD is an X-linked loss of function mutation in the gene encoding dystrophin, the exact mechanisms that perpetuate the disease progression are unknown. Our laboratory has demonstrated that pannexin 1 (Panx1 in rodents; PANX1 in humans) is critical for the development, strength, and regeneration of male skeletal muscle. In normal skeletal muscle, Panx1 is part of a multiprotein complex with dystrophin. We and others have previously shown that Panx1 levels and channel activity are dysregulated in various mouse models of DMD. METHODS: We utilized myoblast cell lines derived from DMD patients to assess PANX1 expression and function. To investigate how Panx1 dysregulation contributes to DMD, we generated a dystrophic (mdx) mouse model that lacks Panx1 (Panx1-/-/mdx). In depth characterization of this model included histological analysis, as well as locomotor, and physiological tests such as muscle force and grip strength assessments. RESULTS: Here, we demonstrate that PANX1 levels and channel function are reduced in patient-derived DMD myoblast cell lines. Panx1-/-/mdx mice have a significantly reduced lifespan, and decreased body weight due to lean mass loss. Their tibialis anterior were more affected than their soleus muscles and displayed reduced mass, myofiber loss, increased centrally nucleated myofibers, and a lower number of muscle stem cells compared to that of Panx1+/+/mdx mice. These detrimental effects were associated with muscle and locomotor functional impairments. In vitro, PANX1 overexpression in patient-derived DMD myoblasts improved their differentiation and fusion. CONCLUSIONS: Collectively, our findings suggest that PANX1/Panx1 dysregulation in DMD exacerbates several aspects of the disease. Moreover, our results suggest a potential therapeutic benefit to increasing PANX1 levels in dystrophic muscles.


Subject(s)
Connexins , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Nerve Tissue Proteins , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Connexins/genetics , Connexins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Humans , Mice , Myoblasts/metabolism , Cell Line , Muscle Strength , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout
2.
Nat Commun ; 13(1): 5633, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163323

ABSTRACT

Non-local effects have the potential to radically move forward quantum enhanced imaging to provide an advantage over classical imaging not only in laboratory environments but practical implementation. In this work, we demonstrate a 43dB higher signal-to-noise ratio (SNR) using a quantum enhanced LiDAR based on time-frequency entanglement compared with a classical phase-insensitive quantum imaging system. Our system can tolerate more than 3 orders of magnitude higher noise than classical single-photon counting quantum imaging systems before detector saturation with a detector dead time of 25ns. To achieve these advantages, we use non-local cancellation of dispersion to take advantage of the strong temporal correlations in photon pairs in spite of the orders of magnitude larger detector temporal uncertainty. We go on to incorporate this scheme with purpose-built scanning collection optics to image non-reflecting targets in an environment with noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...