Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(32): 36054-36065, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32692145

ABSTRACT

The present study elucidates the role of surface oxygen functional groups on the electrochemical behavior of porous carbons when used as anodes for Li-ion batteries. To achieve this objective, a carbon xerogel (CX) obtained by pyrolysis of a resorcinol-formaldehyde gel, was modified by different postsynthesis treatments in order to modulate its surface chemistry while maintaining its external surface constant. Various surface modifications were obtained by oxidation in air, in situ polymerization of dopamine, and finally by grafting of a polyethylene oxide layer on the polydopamine coating. While oxidation in air did not affect the pore texture of the CX, modifications by coating techniques substantially decreased the micropore fraction. Detailed electrochemical characterizations of the materials processed as electrodes were performed by capacitance measurements and galvanostatic cycling. Surface chemistry results, from X-ray photoelectron spectroscopy, show that the accessibility and the capacity increase when carbonyl (R-C═O) groups are formed on the CX, but not with oxides and hydroxyls. The amount of surface carbonyls, and in particular, aldehyde (O═CH) groups, is found to be the key parameter because it is directly correlated with the modified CX electrochemical behavior. Overall, the explored surface coatings tend to reduce the micropore volume and add mainly hydroxyl functional groups but hardly change the Li+ insertion/deinsertion capacities, while oxidation in air adds carbonyl groups, increasing the Li+ ion storage capacity, thanks to an improved accessibility to the carbon network, which is not caused by any textural change.

2.
Chemistry ; 21(11): 4300-7, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25601611

ABSTRACT

A conformationally flexible triazole-carboxylic acid ligand derived from an L-amino acid, namely, 4 H-1,2,4-triazol-4-yl-acetic acid (αHGlytrz), has been exploited to synthesize a structurally diverse and functionally intriguing metal-organic framework with CuSiF6. The crystal structure reveals a novel single-walled metal-organic nanotube (SWMONT), namely, {[Cu3(µ3-OH)(H2O)3(Glytrz)3]⋅SiF6⋅8 H2O⋅X}∞ (1), (where X = disordered lattice water molecules) having a pore size as large as zeolites. Compound 1 was synthesized as crystals, as powder, or as layers by precipitation/electrodeposition. Mercury intrusion porosimetry demonstrates the ability of this material to store metallic mercury, after a pressure treatment, contrary to previous literature examples.

3.
Inorg Chem ; 53(3): 1263-5, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24417443

ABSTRACT

A mononuclear iron(II) neutral complex (1) is screened for sensing abilities for a wide spectrum of chemicals and to evaluate the response function toward physical perturbation like temperature and mechanical stress. Interestingly, 1 precisely detects methanol among an alcohol series. The sensing process is visually detectable, fatigue-resistant, highly selective, and reusable. The sensing ability is attributed to molecular sieving and subsequent spin-state change of iron centers, after a crystal-to-crystal transformation.


Subject(s)
Ferrous Compounds/chemistry , Gases/analysis , Methanol/analysis , Alcohols/analysis , Crystallography, X-Ray , Models, Molecular , Temperature , Volatilization
4.
Chem Commun (Camb) ; 48(67): 8356-8, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22790830

ABSTRACT

Highly porous materials were produced by acrylamide polymerisation templated by supercritical CO(2)-in-water emulsions using new fluorinated glycosurfactants. Properties of the resulting polymer scaffolds were tuned by performing dispersion polymerisations within their cavities filled with supercritical CO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...