Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Yeast ; 16(16): 1519-26, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11113974

ABSTRACT

We report the complete sequence of two cosmids, SPCC895 (38457 bp insert, EMBL Accession No. AL035247) and SPCC1322 (42068 bp insert, EMBL Accession No. AL035259), localized on chromosome III of the Schizosaccharomyces pombe genome. Fourteen Coding DNA sequences (CDSs) were identified in SPCC895 and 17 in SPCC1322. Two known genes were found in each cosmid: map2 and gms1 on SPCC895, encoding the mating type P-factor precursor and an UDP-galactose transporter, respectively, and bub1 and ade6 in SPCC1322, encoding a protein kinase and a phosphoribosylaminoimidazole carboxylase, respectively. The fission yeast K RNA gene has been localized to SPCC895. Three ribosomal proteins have been predicted among these two cosmids. Nine CDSs similar to known proteins were found on SPCC895, and seven on SPCC1322. They include putative genes for an uridylate kinase, a proteasome catalytic component, an ion transporter, a checkpoint protein, a translation initiation protein, a SNARE complex protein, a protein involved in cytoskeletal organization, a spindle pole body-associating protein, pre-mRNA splicing factor RNA helicase, a 3'-5' exonuclease for RNA 3' ss-tail, an UTP-glucose-1-phosphate uridylyltransferase, a leukotriene A(4) hydrolase, a member of the RanBP7-importin beta-Cse1p superfamily, a Ca(++)-calmodulin-dependent serine/threonine protein kinase and a prohibitin antiproliferative protein. One CDS is predicted to be an integral membrane protein. One CDS from SPCC895 is similar to a CDS of unknown function from Saccharomyces cerevisiae and three from SPCC1322 are similar to CDSs of unknown function from Candida albicans, S. cerevisiae and Sz. pombe, respectively. Finally, one CDS of SPCC895 and three of SPCC1322 correspond to orphan genes.


Subject(s)
Chromosomes, Fungal , Cosmids , Schizosaccharomyces/genetics , Amino Acid Sequence , Cosmids/physiology , Fungal Proteins/genetics , Fungal Proteins/physiology , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA
2.
Syst Appl Microbiol ; 23(1): 71-85, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10879981

ABSTRACT

PCR/RFLP of the NTS2 sequence of rDNA was shown to be suitable for differentiating Saccharomyces sensu stricto species. We previously showed that, within the presently accepted S. bayanus taxon, strains formerly classified as S. uvarum represented a distinct subgroup (Nguyen and Gaillardin, 1997). In this study, we reidentified 43 more strains isolated recently from wine, cider and various fermentation habitats, and confirmed by karyotyping, hybridization and mtDNA analysis the homogeneity of strains from the S. uvarum subspecies. Molecular typing of nuclear and mitochondrial genomes of strains preserved in collections, and often originating from beer like S. pastorianusNT, revealed the existence of hybrids between S. uvarum and S. cerevisiae. Surprisingly, S. bayanusT CBS380 appeared itself to be a hybrid between S. uvarum and S. cerevisiae. This strain has a mitochondrial genome identical to that of S. uvarum, and a very similar karyotype with 13 isomorphic chromosomes, six of which at least hybridize strongly with S. uvarum chromosomes or with a S. uvarum specific sequence. However, four of the chromosome bands of S. bayanusT bear Y' sequences indistinguishable from those of S. cerevisiae, a feature that is not observed among presently isolated S. uvarum strains. Because of the hybrid nature of S. bayanus(T) and of the scarcity of similar hybrids among present days isolates, we propose to reinstate S. uvarum as a proper species among the Saccharomyces sensu stricto complex.


Subject(s)
Saccharomyces/classification , Saccharomyces/genetics , Blotting, Southern , Crosses, Genetic , DNA, Fungal/analysis , DNA, Fungal/genetics , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Electrophoresis, Gel, Pulsed-Field , Karyotyping , Mycological Typing Techniques , Nucleic Acid Hybridization , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Telomere/genetics
3.
Mol Gen Genet ; 263(3): 505-13, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10821185

ABSTRACT

In Yarrowia lipolytica, the transcription factor Rim101p mediates both pH regulation and control of mating and sporulation. Like its homologues PacC of Aspergillus nidulans and Rim101p of Saccharomyces cerevisiae, Y1Rim101p is activated by proteolytic C-terminal processing, which occurs in response to a signal transduced by a pathway involving several PAL gene products. We report here the cloning and sequencing of two of these genes, PAL2 and PAL3. PAL2 encodes a putative 632-residue protein with six possible transmembrane segments, which differs from the transmembrane proteins Rim9p of S. cerevisiae and Pall of A. nidulans, but is homologous to A. nidulans Pa1H and to the product of the ORF YNL294c, a predicted polypeptide of unknown function in S. cerevisiae. PAL3 encodes an 881-residue polypeptide that is homologous to PalF of A. nidulans and to a newly identified putative polypeptide of S. cerevisiae. Both PAL2 and PAL3 are expressed constitutively, regardless of ambient pH. Mutations in these genes affect growth at alkaline pH and sporulation in both Y. lipolytica and in S. cerevisiae. They affect invasiveness of haploid strains in S. cerevisiae only, and conjugation in Y. lipolytica only. These results highlight the conservation of the Pal pathway initially described in A. nidulans.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Aspergillus nidulans/genetics , Fungal Proteins/genetics , Membrane Proteins , Signal Transduction , Amino Acid Sequence , Blotting, Northern , Cloning, Molecular , Hydrogen-Ion Concentration , Molecular Sequence Data , Phenotype , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid
4.
Yeast ; 16(4): 299-306, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10669867

ABSTRACT

We report the complete sequence of two cosmids, SPBC19C7 (34815 bp insert, Accession No. AL023859) and SPBC15D4 (33203 bp insert, Accession No. AL031349), localized on chromosome II of the S. pombe genome. Twelve open reading frames (ORFs) were identified in SPBC19C7 and 16 in SPBC5D4. Two known genes were found on each cosmid: cyr1 and uve1 on SPBC19C7, encoding adenylate cyclase and a UV-endonuclease, respectively, and gpt and pho2 on SPBC15D4, encoding an N-acetylglucosamine-1-phosphate transferase and a4-nitrophenylphosphatase, respectively. Five ORFs similar to known proteins were found on SPBC19C7, and six on SPBC15D4. They include putative genes for a ubiquitin protein ligase, a prolyl-tRNA synthetase, a tRNA splicing endonuclease, a voltage-gated chloride channel, a mannosyl transferase, a kinesin-like protein, a histone transcriptional regulator, an N-acetyltransferase, a cystathionine gamma-synthase and a TFIID subunit. Two ORF products of SPBC15D4 do not have clear homologues: one encodes a putative transcriptional regulator with a binuclear zinc domain and the other a protein with six transmembrane domains. Two ORFs from SPBC15D4 are similar to unknown ORFs, one from Saccharomyces cerevisiae and the other from Caenorhabditis elegans. Finally, two ORFs of SPBC19C7 and six of SPBC15D4 correspond to orphan genes. The frequent occurrence of introns and the short and degenerated intron-exon boundaries consensus sequences significantly complicated ORF predictions. Two potential ORF-free regions spanning several kb were predicted, and a clustering of ORFs transcribed in the same orientation was observed.


Subject(s)
Chromosomes, Fungal/genetics , Cosmids/genetics , Schizosaccharomyces/genetics , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Genome, Fungal , Molecular Sequence Data , Open Reading Frames/genetics , Sequence Analysis, DNA
5.
FEBS Lett ; 487(1): 3-12, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152876

ABSTRACT

The identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the 'yeast-specific' genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated 'Génolevures'.


Subject(s)
Ascomycota/genetics , Evolution, Molecular , Genome, Fungal , Phylogeny , Ascomycota/physiology , Genomics/methods , Molecular Sequence Data , RNA, Ribosomal , Sequence Analysis, DNA
6.
FEBS Lett ; 487(1): 17-30, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152878

ABSTRACT

The primary analysis of the sequences for our Hemiascomycete random sequence tag (RST) project was performed using a combination of classical methods for sequence comparison and contig assembly, and of specifically written scripts and computer visualization routines. Comparisons were performed first against DNA and protein sequences from Saccharomyces cerevisiae, then against protein sequences from other completely sequenced organisms and, finally, against protein sequences from all other organisms. Blast alignments were individually inspected to help recognize genes within our random genomic sequences despite the fact that only parts of them were available. For each yeast species, validated alignments were used to infer the proper genetic code, to determine codon usage preferences and to calculate their degree of sequence divergence with S. cerevisiae. The quality of each genomic library was monitored from contig analysis of the DNA sequences. Annotated sequences were submitted to the EMBL database, and the general annotation tables produced served as a basis for our comparative description of the evolution, redundancy and function of the Hemiascomycete genomes described in other articles of this issue.


Subject(s)
Ascomycota/genetics , Genomics/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Amino Acid Sequence , Electronic Data Processing/methods , Gene Library , Genetic Code , Genome, Fungal , Molecular Sequence Data , Reproducibility of Results , Sequence Homology, Amino Acid
7.
FEBS Lett ; 487(1): 31-6, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152879

ABSTRACT

Since its completion more than 4 years ago, the sequence of Saccharomyces cerevisiae has been extensively used and studied. The original sequence has received a few corrections, and the identification of genes has been completed, thanks in particular to transcriptome analyses and to specialized studies on introns, tRNA genes, transposons or multigene families. In order to undertake the extensive comparative sequence analysis of this program, we have entirely revisited the S. cerevisiae sequence using the same criteria for all 16 chromosomes and taking into account publicly available annotations for genes and elements that cannot be predicted. Comparison with the other yeast species of this program indicates the existence of 50 novel genes in segments previously considered as 'intergenic' and suggests extensions for 26 of the previously annotated genes.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae/genetics , Ascomycota/genetics , Chromosomes, Fungal , DNA, Intergenic , Genes, Fungal , Multigene Family , Open Reading Frames , RNA, Transfer/genetics , Sequence Alignment/methods
8.
FEBS Lett ; 487(1): 42-6, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152881

ABSTRACT

Random sequence tags were obtained from a genomic DNA library of Saccharomyces exiguus. The mitochondrial genome appeared to be at least 25.7 kb in size, with a different organization compared to Saccharomyces cerevisiae. An unusual putative 953 bp long terminal repeated element associated to Ty3 was found. A set of 1451 genes was identified homologous to S. cerevisiae open reading frames. Only five genes were identified outside the S. cerevisiae taxon, confirming that S. exiguus is phylogenetically closely related to S. cerevisiae. Unexpectedly, numerous duplicated genes were found whereas they are unique in S. cerevisiae. The sequences are deposited at EMBL under the accession numbers: AL407377-AL409955.


Subject(s)
Genome, Fungal , Saccharomyces/genetics , Ascomycota/genetics , DNA Transposable Elements , DNA, Mitochondrial , DNA, Ribosomal , Gene Dosage , Gene Duplication , Gene Order , Genes, Fungal , Genomics/methods , Molecular Sequence Data , Sequence Alignment
9.
FEBS Lett ; 487(1): 47-51, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152882

ABSTRACT

The genome of Saccharomyces servazzii was analyzed with 2570 random sequence tags totalling 2.3 Mb. BLASTX comparisons revealed a minimum of 1420 putative open reading frames with significant homology to Saccharomyces cerevisiae (58% aa identity on average), two with Schizosaccharomyces pombe and one with a human protein, confirming that S. servazzii is closely related to S. cerevisiae. About 25% of the S. servazzii genes were identified, assuming that the gene complement is identical in both yeasts. S. servazzii carries very few transposable elements related to Ty elements in S. cerevisiae. Most of the mitochondrial genes were identified in eight contigs altogether spanning 25 kb for a predicted size of 29 kb. A significant match with the Kluyveromyces lactis linear DNA plasmid pGKL-1 encoded RF4 killer protein suggests that a related plasmid exists in S. servazzii. The sequences have been deposited with EMBL under the accession numbers AL402279-AL404848.


Subject(s)
Genome, Fungal , Saccharomyces/genetics , Ascomycota/genetics , DNA, Mitochondrial , DNA, Ribosomal , Fungal Proteins/classification , Fungal Proteins/genetics , Gene Duplication , Humans , Introns , Molecular Sequence Data , Nuclear Proteins/genetics , Plasmids/genetics , Retroelements , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Spliceosomes/genetics
10.
FEBS Lett ; 487(1): 56-60, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152884

ABSTRACT

The genome of Saccharomyces kluyveri was explored through 2528 random sequence tags with an average length of 981 bp. The complete nuclear ribosomal DNA unit was found to be 8656 bp in length. Sequences homologous to retroelements of the gypsy and copia types were identified as well as numerous solo long terminal repeats. We identified at least 1406 genes homologous to Saccharomyces cerevisiae open reading frames, with on average 58.1% and 72.4% amino acid identity and similarity, respectively. In addition, by comparison with completely sequenced genomes and the SwissProt database, we found 27 novel S. kluyveri genes. Most of these genes belong to pathways or have functions absent from S. cerevisiae, such as the catabolic pathway of purines or pyrimidines, melibiose fermentation, sorbitol utilization, or degradation of pollutants. The sequences are deposited in EMBL under the accession numbers AL404849-AL407376.


Subject(s)
Genome, Fungal , Saccharomyces/genetics , Ascomycota/genetics , Fungal Proteins/classification , Fungal Proteins/genetics , Molecular Sequence Data , Open Reading Frames , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid
11.
FEBS Lett ; 487(1): 82-6, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152889

ABSTRACT

By analyzing 2830 random sequence tags (RSTs), totalling 2.7 Mb, we explored the genome of the marine, osmo- and halotolerant yeast, Debaryomyces hansenii. A contig 29 kb in length harbors the entire mitochondrial genome. The genes encoding Cox1, Cox2, Cox3, Cob, Atp6, Atp8, Atp9, several subunits of the NADH dehydrogenase complex 1 and 11 tRNAs were unambiguously identified. An equivalent number of putative transposable elements compared to Saccharomyces cerevisiae were detected, the majority of which are more related to higher eukaryote copia elements. BLASTX comparisons of RSTs with databases revealed at least 1119 putative open reading frames with homology to S. cerevisiae and 49 to other genomes. Specific functions, including transport of metabolites, are clearly over-represented in D. hansenii compared to S. cerevisiae, consistent with the observed difference in physiology of the two species. The sequences have been deposited with EMBL under the accession numbers AL436045-AL438874.


Subject(s)
Ascomycota/genetics , Fungal Proteins/genetics , Genome, Fungal , DNA Transposable Elements , DNA, Mitochondrial , DNA, Ribosomal , Fungal Proteins/classification , Gene Duplication , Molecular Sequence Data , Nuclear Proteins/genetics , RNA, Transfer , Saccharomyces cerevisiae/genetics
12.
FEBS Lett ; 487(1): 101-12, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152893

ABSTRACT

We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.


Subject(s)
Ascomycota/genetics , Chromosome Mapping/methods , Chromosomes, Fungal , Gene Order , Genomics/methods , Computational Biology/methods , Gene Deletion , Gene Duplication , Saccharomyces cerevisiae/genetics
13.
FEBS Lett ; 487(1): 95-100, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152892

ABSTRACT

A total of 4940 random sequence tags of the dimorphic yeast Yarrowia lipolytica, totalling 4.9 Mb, were analyzed. BLASTX comparisons revealed at least 1229 novel Y. lipolytica genes 1083 genes having homology with Saccharomyces cerevisiae genes and 146 with genes from various other genomes. This confirms the rapid sequence evolution assumed for Y. lipolytica. Functional analysis of newly discovered genes revealed that several enzymatic activities were increased compared to S. cerevisiae, in particular, transport activities, ion homeostasis, and various metabolism pathways. Most of the mitochondrial genes were identified in contigs spanning more than 47 kb. Matches to retrotransposons were observed, including a S. cerevisiae Ty3 and a LINE element. The sequences have been deposited with EMBL under the accession numbers AL409956-AL414895.


Subject(s)
Genome, Fungal , Yeasts/genetics , DNA Transposable Elements , DNA, Mitochondrial , DNA, Ribosomal , Fungal Proteins/classification , Fungal Proteins/genetics , Gene Duplication , Molecular Sequence Data , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid
14.
FEBS Lett ; 487(1): 113-21, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152894

ABSTRACT

Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.


Subject(s)
Ascomycota/genetics , Genes, Fungal , Base Sequence , Conserved Sequence , Evolution, Molecular , Genetic Variation , Saccharomyces cerevisiae/genetics , Species Specificity
15.
FEBS Lett ; 487(1): 122-33, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152895

ABSTRACT

We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.


Subject(s)
Ascomycota/genetics , Evolution, Molecular , Genes, Fungal , Base Sequence , Conserved Sequence , Genetic Variation , Genome, Fungal , Models, Genetic , Multigene Family , Saccharomyces cerevisiae/genetics , Telomere/genetics
16.
FEBS Lett ; 487(1): 134-49, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11152896

ABSTRACT

We explored the biological diversity of hemiascomycetous yeasts using a set of 22000 newly identified genes in 13 species through BLASTX searches. Genes without clear homologue in Saccharomyces cerevisiae appeared to be conserved in several species, suggesting that they were recently lost by S. cerevisiae. They often identified well-known species-specific traits. Cases of gene acquisition through horizontal transfer appeared to occur very rarely if at all. All identified genes were ascribed to functional classes. Functional classes were differently represented among species. Species classification by functional clustering roughly paralleled rDNA phylogeny. Unequal distribution of rapidly evolving, ascomycete-specific, genes among species and functions was shown to contribute strongly to this clustering. A few cases of gene family amplification were documented, but no general correlation could be observed between functional differentiation of yeast species and variations of gene family sizes. Yeast biological diversity seems thus to result from limited species-specific gene losses or duplications, and for a large part from rapid evolution of genes and regulatory factors dedicated to specific functions.


Subject(s)
Ascomycota/genetics , Fungal Proteins/classification , Fungal Proteins/metabolism , Genes, Fungal , Fungal Proteins/genetics , Gene Amplification , Genetic Variation , Genomics/methods , Phylogeny , Saccharomyces cerevisiae , Sequence Homology, Nucleic Acid , Software , Species Specificity , Yeasts/genetics
17.
Mol Biol Cell ; 10(3): 757-69, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10069816

ABSTRACT

We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.


Subject(s)
Chromosomes, Fungal , DNA Replication/genetics , DNA, Fungal/genetics , Replication Origin , Saccharomycetales/genetics , Centromere/genetics , Cloning, Molecular , Plasmids/genetics , Sequence Homology, Nucleic Acid
18.
Yeast ; 14(6): 551-64, 1998 Apr 30.
Article in English | MEDLINE | ID: mdl-9605505

ABSTRACT

In order to study meiotic segregation of chromosome length polymorphism in yeast, we analysed the progeny of a cross involving two laboratory strains FL100trp and YNN295. Analysis of the parental strains led us to detect an important length polymorphism of chromosomes I and III in FL100trp. A reciprocal translocation involving 80 kb of the left arm of chromosome III and 45 kb of the right arm of chromosome I was shown to be the cause for the observed polymorphism in this strain. The characterization of the translocation breakpoints revealed the existence of a transposition hot-spot on chromosome I: the sequence of the translocation joints on chromosomes I and III suggests that the mechanism very likely involved homologous recombination between Ty2 transposable elements on each chromosome. Analysis of FL100, FL200 and FL100trp ura, which are related to FL100trp, shows that this reciprocal translocation is present in some of the strains of the FL series, whereas the parental strain FL100 does not carry the same rearrangement. We evidenced instead the duplication of 80 kb of chromosome III on chromosome I and a deletion of 45 kb of the right arm of chromosome I in this strain, indicating that secondary events might have taken place and that the strain currently named FL100 is not the common ancestor of the FL series.


Subject(s)
Chromosomes, Fungal/genetics , Polymorphism, Genetic , Saccharomyces cerevisiae/genetics , Translocation, Genetic , Base Sequence , Crosses, Genetic , DNA, Fungal/genetics , Electrophoresis, Gel, Pulsed-Field , Karyotyping , Molecular Sequence Data , Polymerase Chain Reaction , Saccharomyces cerevisiae/growth & development , Sequence Analysis, DNA , Species Specificity
19.
Mol Cell Biol ; 17(7): 3966-76, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9199331

ABSTRACT

Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes both an acidic proteinase and an alkaline proteinase, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Recessive mutations at four unlinked loci, named PAL1 to PAL4, were isolated which prevent alkaline proteinase derepression under conditions of carbon and nitrogen limitation at pH 6.8. These mutations markedly affect mating and sporulation. A dominant suppressor of all four PAL mutations was isolated from a wild-type genomic library, which turned out to be a C-terminally truncated form of a 585-residue transcriptional factor of the His2Cys2 zinc finger family, which we propose to call YlRim101p. Another C-terminally truncated version of YlRim101p (419 residues) is encoded by the dominant RPH2 mutation previously isolated as expressing alkaline protease independently of the pH. YlRim101p is homologous to the transcriptional activators Rim101p of Saccharomyces cerevisiae, required for entry into meiosis, and PacC of Aspergillus nidulans and Penicillium chrysogenum, which were recently shown to mediate regulation by ambient pH. YlRim101p appears essential for mating and sporulation and for alkaline proteinase derepression. YlRIM101 expression is autoregulated, maximal at alkaline pH, and strongly impaired by PAL mutations.


Subject(s)
DNA-Binding Proteins/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins , Saccharomycetales/genetics , Serine Endopeptidases/genetics , Transcription Factors/genetics , Yeasts/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Consensus Sequence , DNA Footprinting , DNA-Binding Proteins/physiology , Fungal Proteins/physiology , Genetic Complementation Test , Hydrogen-Ion Concentration , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Repressor Proteins , Sequence Alignment , Sequence Homology, Amino Acid , Spores, Fungal , Transcription, Genetic
20.
Nature ; 387(6632 Suppl): 93-8, 1997 May 29.
Article in English | MEDLINE | ID: mdl-9169873

ABSTRACT

In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.


Subject(s)
Chromosomes, Fungal , Evolution, Molecular , Saccharomyces cerevisiae/genetics , Base Sequence , Molecular Sequence Data , Multigene Family , Open Reading Frames , Restriction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...