Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Bull Math Biol ; 86(3): 29, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38345678

ABSTRACT

Both the rod and cone photoreceptors, along with the retinal pigment epithelium have been experimentally and mathematically shown to work interdependently to maintain vision. Further, the theoredoxin-like rod-derived cone viability factor (RdCVF) and its long form (RdCVFL) have proven to increase photoreceptor survival in experimental results. Aerobic glycolysis is the primary source of energy production for photoreceptors and RdCVF accelerates the intake of glucose into the cones. RdCVFL helps mitigate the negative effects of reactive oxidative species and has shown promise in slowing the death of cones in mouse studies. However, this potential treatment and its effects have never been studied in mathematical models. In this work, we examine an optimal control with the treatment of RdCVFL. We mathematically illustrate the potential this treatment might have for treating degenerative retinal diseases such as retinitis pigmentosa, as well as compare this to the results of an updated control model with RdCVF.


Subject(s)
Models, Biological , Retinitis Pigmentosa , Animals , Mice , Mathematical Concepts , Retina , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa/therapy
2.
Article in English | MEDLINE | ID: mdl-37848252

ABSTRACT

Vision is initiated by capturing photons in highly specialized sensory cilia known as the photoreceptor outer segment. Because of its lipid and protein composition, the outer segments are prone to photo-oxidation, requiring photoreceptors to have robust antioxidant defenses and high metabolic synthesis rates to regenerate the outer segments every 10 days. Both processes required high levels of glucose uptake and utilization. Retinitis pigmentosa is a prevalent form of inherited retinal degeneration characterized by initial loss of low-light vision caused by the death of rod photoreceptors. In this disease, rods die as a direct effect of an inherited mutation. Following the loss of rods, cones eventually degenerate, resulting in complete blindness. The progression of vision loss in retinitis pigmentosa suggested that rod photoreceptors were necessary to maintain healthy cones. We identified a protein secreted by rods that functions to promote cone survival, and we named it rod-derived cone viability factor (RdCVF). RdCVF is encoded by an alternative splice product of the nucleoredoxin-like 1 (NXNL1) gene, and RdCVF was found to accelerate the uptake of glucose by cones. Without RdCVF, cones eventually die because of compromised glucose uptake and utilization. The NXNL1 gene also encodes for the thioredoxin RdCVFL, which reduces cysteines in photoreceptor proteins that are oxidized, providing a defense against radical oxygen species. We will review here the main steps of discovering this novel intercellular signaling currently under translation as a broad-spectrum treatment for retinitis pigmentosa.

3.
Acta Biomater ; 161: 37-49, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36898472

ABSTRACT

Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging. We developed an affinity-controlled release strategy for RdCVFL. An injectable physical blend of hyaluronan and methylcellulose (HAMC) was covalently modified with a peptide binding partner of the Src homology 3 (SH3) domain. This domain was expressed as a fusion protein with RdCVFL, thereby enabling its controlled release from HAMC-binding peptide. Sustained release of RdCVFL was demonstrated for the first time as RdCVFL-SH3 from HAMC-binding peptide for 7 d in vitro. To assess bioactivity, chick retinal dissociates were harvested and treated with the affinity-released recombinant protein from the HAMC-binding peptide vehicle. After 6 d in culture, cone cell viability was greater when cultured with released RdCVFL-SH3 relative to controls. We utilized computational fluid dynamics to model release of RdCVFL-SH3 from our delivery vehicle in the vitreous of the human eye. We demonstrate that our delivery vehicle can prolong the bioavailability of RdCVFL-SH3 in the retina, potentially enhancing its therapeutic effects. Our affinity-based system constitutes a versatile delivery platform for ultimate intraocular injection in the treatment of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Retinitis pigmentosa (RP) is the leading cause of inherited blindness in the world. Rod-derived cone viability factor (RdCVF), a novel protein paracrine factor, is effective in preclinical models of RP. To extend its therapeutic effects, we developed an affinity-controlled release strategy for the long form of RdCVF, RdCVFL. We expressed RdCVFL as a fusion protein with an Src homology 3 domain (SH3). We then utilized a hydrogel composed of hyaluronan and methylcellulose (HAMC) and modified it with SH3 binding peptides to investigate its release in vitro. Furthermore, we designed a mathematical model of the human eye to investigate delivery of the protein from the delivery vehicle. This work paves the way for future investigation of controlled release RdCVF.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Humans , Retinal Cone Photoreceptor Cells/metabolism , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/therapeutic use , Hyaluronic Acid/metabolism , Eye Proteins/genetics , Retinal Degeneration/metabolism , Methylcellulose
4.
Prog Retin Eye Res ; 93: 101155, 2023 03.
Article in English | MEDLINE | ID: mdl-36669906

ABSTRACT

Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.


Subject(s)
Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Myopia , Night Blindness , Animals , Mice , Humans , Night Blindness/genetics , Genome-Wide Association Study , Electroretinography/methods , Mutation , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/metabolism , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Myopia/genetics , Membrane Proteins/genetics
6.
J Biomed Sci ; 29(1): 107, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539812

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS: We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS: Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS: Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.


Subject(s)
Retinal Diseases , Spinocerebellar Ataxias , Mice , Animals , Spinocerebellar Ataxias/genetics , Transcription Factors/genetics , Disease Models, Animal , Retinal Diseases/genetics , Gene Expression , Epigenesis, Genetic
7.
Redox Biol ; 57: 102510, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36274523

ABSTRACT

The human retina is facing a big challenge of reactive oxygen species (ROS) from endogenous and exogenous sources. Excessive ROS can cause damage to DNA, lipids, and proteins, triggering abnormal redox signaling, and ultimately lead to cell death. Thus, oxidative stress has been observed in inherited retinal diseases as a common hallmark. To counteract the detrimental effect of ROS, cells are equipped with various antioxidant defenses. In this review, we will focus on the antioxidant systems in the retina and how they can protect retina from oxidative stress. Both small antioxidants and antioxidant enzymes play a role in ROS removal. Particularly, the thioredoxin and glutaredoxin systems, as the major antioxidant systems in mammalian cells, exert functions in redox signaling regulation via modifying cysteines in proteins. In addition, the thioredoxin-like rod-derived cone viability factor (RdCVFL) and thioredoxin interacting protein (TXNIP) can modulate metabolism in photoreceptors and promote their survival. In conclusion, elevating the antioxidant capacity in retina is a promising therapy to curb the progress of inherited retinal degeneration.

8.
Front Genet ; 13: 900849, 2022.
Article in English | MEDLINE | ID: mdl-36017494

ABSTRACT

We studied the origin of rod-derived cone viability factor (RdCVF) during evolution. In mammals, the nucleoredoxin-like 1 gene (NXNL1) produces a truncated thioredoxin-like protein, RdCVF, by intron retention in rod photoreceptors of the retina. This protein prevents the secondary cone degeneration in animal models of rod-cone degeneration. Extracellular RdCVF binds to a complex at the surface of the cones, composed of the basigin-1, a photoreceptor specific alternative splicing product of the basigin gene, and GLUT1, the glucose transporter. RdCVF accelerates glucose uptake allosterically. Glucose is either metabolized by aerobic glycolysis to sustain cone outer segment renewal or by the pentose phosphate pathway to support redox power to the thioredoxin RdCVFL. RdCVF signaling predates the appearance of the eye and evolved through two alternative splicing events. RdCVF signaling is observed first in hydra where it regulates an unknown signaling. A scallop RdCVF protein is produced by ciliated photoreceptors of the retina and binds its receptor, BSG1, the first occurrence of RdCVF/BSG1 signaling. In the lamprey, RdCVF metabolic signaling between rod and cones is fully operational. In the mouse, the production of BSG1 is regulated through alternative splicing. This signaling was extended to other regions of the brain, via its paralogue NXNL2.

10.
Redox Biol ; 48: 102198, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34856436

ABSTRACT

The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.

11.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360642

ABSTRACT

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Subject(s)
Cone-Rod Dystrophies/pathology , Genes, Recessive , Mitochondrial Proteins/genetics , Mutation , Potassium Channels/genetics , Adult , Cone-Rod Dystrophies/etiology , Cone-Rod Dystrophies/metabolism , Female , Humans , Male , Pedigree , Phenotype
12.
Am J Ophthalmol ; 230: 12-47, 2021 10.
Article in English | MEDLINE | ID: mdl-34000280

ABSTRACT

PURPOSE: To describe the value of integrating phenotype/genotype data, disease staging, and evaluation of functional vision in patient-centered management of retinal dystrophies. METHODS: (1) Cross-sectional structure-function and retrospective longitudinal studies to assess the correlations between standard fundus autofluorescence (FAF), optical coherence tomography, visual acuity (VA), and perimetry (visual field [VF]) examinations to evaluate photoreceptor functional loss in a cohort of patients with rod-cone dystrophy (RCD); (2) flood-illumination adaptive optics (FIAO) imaging focusing on photoreceptor misalignment and orientation of outer segments; and (3) evaluation of the impact of visual impairment in daily life activities, based on functional (visual and mobility) vision assessment in a naturalistic environment in visually impaired subjects with RCD and subjects treated with LuxturnaⓇ for RPE65-related Leber congenital amaurosis before and after therapy. RESULTS: The results of the cross-sectional transversal study showed that (1) VA and macular sensitivity were weakly correlated with the structural variables; and (2) functional impairment (VF) was correlated with reduction of anatomical markers of photoreceptor structure and increased width of autofluorescent ring. The dimensions of the ring of increased FAF evolved faster. Other criteria that differed among groups were the lengths of the ellipsoid zone, the external limiting membrane, and the foveal thickness. FIAO revealed a variety of phenotypes: paradoxical visibility of foveal cones; heterogeneous brightness of cones; dim, inner segment-like, and RPE-like mosaic. Directional illumination by varying orientation of incident light (Stiles-Crawford effect) and the amount of side illumination (gaze-dependent imaging) affected photoreceptor visibility. Mobility assessment under different lighting conditions showed correlation with VF, VA, contrast sensitivity (CS), and dark adaptation, with different predictive values depending on mobility study paradigms and illumination level. At high illumination level (235 lux), VF was a predictor for all mobility performance models. Under low illumination (1 and 2 lux), VF was the most significant predictor of mobility performance variables, while CS best explained the number of collisions and segments. In subjects treated with LuxturnaⓇ, a very favorable impact on travel speed and reduction in the number of collisions, especially at low luminance, was observable 6 months following injection, in both children and adults. CONCLUSIONS: Our results suggest the benefit of development and implementation of quantitative and reproducible tools to evaluate the status of photoreceptors and the impact of both visual impairment and novel therapies in real-life conditions. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Dystrophies , Cross-Sectional Studies , Humans , Retinal Dystrophies/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence
13.
J Vis Exp ; (169)2021 03 20.
Article in English | MEDLINE | ID: mdl-33818576

ABSTRACT

Human daytime vision relies on the function of cone photoreceptors at the center of the retina, the fovea. Patients suffering from the most prevalent form of inherited retinal degeneration, retinitis pigmentosa, lose night vision because of mutation driven loss of rod photoreceptors, a phenomenon followed by a progressive loss of function and death of cones leading to blindness. Geneticists have identified many genes with mutations causing this disease, but the first mutations identified questioned the mechanisms of secondary cone degeneration and how a dominant mutation in the rhodopsin gene encoding for the visual pigment expressed exclusively in rods can trigger cone degeneration. This result of transplantations in a genetic model of the disease led to the concept of cell interactions between rods and cones and of non-cell autonomous degeneration of cones in all genetic forms of retinitis pigmentosa. Cones comprise 5% of all photoreceptors in humans and only 3% in the mouse, so their study is difficult in these species, but cones outnumber rods in bird species. We have adapted 96-well plates to culture retinal precursors from the retina of chicken embryos at stage 29 of their development. In these primary cultures, cones represent 80% of the cells after in vitro differentiation. The cells degenerate over a period of one week in the absence of serum. Here, we describe the methods and its standardization. This cone-enriched culture system was used to identify the epithelium-derived cone viability factor (EdCVF) by high content screening of a rat retinal pigmented epithelium normalized cDNA library. Recombinant EdCVF prevents the degeneration of the cones.


Subject(s)
Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Cell Culture Techniques , Chick Embryo , Chickens
14.
J Theor Biol ; 520: 110642, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33636201

ABSTRACT

Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy production. Reactive oxidative species (ROS) result from the rod and cone metabolism and recent experimental work has shown that the long form of RdCVF (RdCVFL) helps mitigate the negative effects of ROS. In this work we investigate the role of RdCVFL in maintaining the health of the photoreceptors. The results of our mathematical model show the necessity of RdCVFL and also demonstrate additional stable modes that are present in this system. The sensitivity analysis shows the importance of glucose uptake, nutrient levels, and ROS mitigation in maintaining rod and cone health in light-damaged mouse models. Together, these suggests areas on which to focus treatment in order to prolong the photoreceptors, especially in situations where ROS is a contributing factor to their death such as retinitis pigmentosa.


Subject(s)
Retinitis Pigmentosa , Thioredoxins , Animals , Mice , Models, Theoretical , Oxidation-Reduction , Retinal Cone Photoreceptor Cells/metabolism , Thioredoxins/metabolism
15.
Cells ; 10(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33477551

ABSTRACT

Age-related macular degeneration (AMD) is a blinding disease for which most of the patients remain untreatable. Since the disease affects the macula at the center of the retina, a structure specific to the primate lineage, rodent models to study the pathophysiology of AMD and to develop therapies are very limited. Consequently, our understanding relies mostly on genetic studies highlighting risk alleles at many loci. We are studying the possible implication of a metabolic imbalance associated with risk alleles within the SLC16A8 gene that encodes for a retinal pigment epithelium (RPE)-specific lactate transporter MCT3 and its consequences for vision. As a first approach, we report here the deficit in transepithelial lactate transport of a rare SLC16A8 allele identified during a genome-wide association study. We produced induced pluripotent stem cells (iPSCs) from the unique patient in our cohort that carries two copies of this allele. After in vitro differentiation of the iPSCs into RPE cells and their characterization, we demonstrate that the rare allele results in the retention of intron 2 of the SLC16A8 gene leading to the absence of MCT3 protein. We show using a biochemical assay that these cells have a deficit in transepithelial lactate transport.


Subject(s)
Alternative Splicing , Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Retinal Pigment Epithelium/metabolism , Biological Transport, Active/genetics , Epithelial Cells/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Monocarboxylic Acid Transporters/genetics , Retinal Pigment Epithelium/pathology
16.
Clin Genet ; 99(2): 298-302, 2021 02.
Article in English | MEDLINE | ID: mdl-33124039

ABSTRACT

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Subject(s)
Carrier Proteins/genetics , Cone-Rod Dystrophies/genetics , Adult , Genetic Association Studies , Humans , Male , Pedigree , WD40 Repeats
17.
J Neuroinflammation ; 17(1): 358, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243251

ABSTRACT

BACKGROUND: Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS: Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS: Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03318588.


Subject(s)
Insulin/pharmacology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Detachment/metabolism , Retinal Detachment/pathology , Adult , Animals , Cell Death/physiology , Eye Proteins/metabolism , Female , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Middle Aged , Retinal Cone Photoreceptor Cells/drug effects , Retinal Detachment/immunology , Rosiglitazone/pharmacology , Thioredoxins/metabolism
18.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814029

ABSTRACT

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Subject(s)
CD47 Antigen/metabolism , Chromosomes, Human, Pair 10/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Macular Degeneration/genetics , Osteopontin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites/physiology , COS Cells , Cell Line , Chlorocebus aethiops , Eye/pathology , Genetic Predisposition to Disease/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Signal Transduction/genetics
19.
Int J Mol Sci ; 21(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120883

ABSTRACT

The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.


Subject(s)
Genetic Therapy/methods , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/therapy , Thioredoxins/genetics , Thioredoxins/metabolism , Animals , Disease Models, Animal , Humans , Oxidation-Reduction , Retinal Diseases/congenital , Retinal Diseases/enzymology , Retinal Diseases/metabolism , Retinal Diseases/therapy , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Signal Transduction/genetics , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism
20.
Int J Mol Sci ; 20(19)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590277

ABSTRACT

The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.


Subject(s)
Photoreceptor Cells/metabolism , Proteome , Retinal Degeneration/genetics , Transcriptome , Animals , Genomics/methods , Humans , Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...