Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article in English | MEDLINE | ID: mdl-38734892

ABSTRACT

Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.


Subject(s)
Bacteria , Humans , Bacteremia/microbiology , Virulence Factors , Blood/microbiology , Microbial Viability
2.
Microbiol Resour Announc ; 12(11): e0083823, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37906029

ABSTRACT

We report the complete genome sequence of Yersinia pseudotuberculosis strain SP-1303, identified as part of lineage 8 and associated with Far East scarlet-like fever. The genome includes the chromosome, the Yersinia-virulence plasmid (pYV) encoding a type III secretion system essential for virulence, the pVM82 plasmid, and two cryptic plasmids.

3.
Microbiol Spectr ; : e0382622, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847572

ABSTRACT

The genus Yersinia includes a large variety of nonpathogenic and life-threatening pathogenic bacteria, which cause a broad spectrum of diseases in humans and animals, such as plague, enteritis, Far East scarlet-like fever (FESLF), and enteric redmouth disease. Like most clinically relevant microorganisms, Yersinia spp. are currently subjected to intense multi-omics investigations whose numbers have increased extensively in recent years, generating massive amounts of data useful for diagnostic and therapeutic developments. The lack of a simple and centralized way to exploit these data led us to design Yersiniomics, a web-based platform allowing straightforward analysis of Yersinia omics data. Yersiniomics contains a curated multi-omics database at its core, gathering 200 genomic, 317 transcriptomic, and 62 proteomic data sets for Yersinia species. It integrates genomic, transcriptomic, and proteomic browsers, a genome viewer, and a heatmap viewer to navigate within genomes and experimental conditions. For streamlined access to structural and functional properties, it directly links each gene to GenBank, the Kyoto Encyclopedia of Genes and Genomes (KEGG), UniProt, InterPro, IntAct, and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and each experiment to Gene Expression Omnibus (GEO), the European Nucleotide Archive (ENA), or the Proteomics Identifications Database (PRIDE). Yersiniomics provides a powerful tool for microbiologists to assist with investigations ranging from specific gene studies to systems biology studies. IMPORTANCE The expanding genus Yersinia is composed of multiple nonpathogenic species and a few pathogenic species, including the deadly etiologic agent of plague, Yersinia pestis. In 2 decades, the number of genomic, transcriptomic, and proteomic studies on Yersinia grew massively, delivering a wealth of data. We developed Yersiniomics, an interactive web-based platform, to centralize and analyze omics data sets on Yersinia species. The platform allows user-friendly navigation between genomic data, expression data, and experimental conditions. Yersiniomics will be a valuable tool to microbiologists.

4.
Front Cell Infect Microbiol ; 10: 577559, 2020.
Article in English | MEDLINE | ID: mdl-33102257

ABSTRACT

Macrophages participate to the first line of defense against infectious agents. Microbial pathogens evolved sophisticated mechanisms to escape macrophage killing. Here, we review recent discoveries and emerging concepts on bacterial molecular strategies to subvert macrophage immune responses. We focus on the expanding number of fascinating subversive tools developed by Listeria monocytogenes, Staphylococcus aureus, and pathogenic Yersinia spp., illustrating diversity and commonality in mechanisms used by microorganisms with different pathogenic lifestyles.


Subject(s)
Listeria monocytogenes , Listeriosis , Humans , Immune Evasion , Macrophages , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...