Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Carbohydr Polym ; 178: 95-104, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29050620

ABSTRACT

A heteropolysaccharide was isolated by cold aqueous extraction from edible mushroom Pleurotus eryngii ("King Oyster") basidiocarps and its biological properties were evaluated. Structural assignments were carried out using mono- and bidimensional NMR spectroscopy, monosaccharide composition, and methylation analyses. A mannogalactan having a main chain of (1→6)-linked α-d-galactopyranosyl and 3-O-methyl-α-d-galactopyranosyl residues, both partially substituted at OH-2 by ß-d-Manp (MG-Pe) single-unit was found. Biological effects of mannogalactan from P. eryngii (MG-Pe) were tested against murine melanoma cells. MG-Pe was non-cytotoxic, but reduced in vitro melanoma cells invasion. Also, 50mg/kg MG-Pe administration to melanoma-bearing C57BL/6 mice up to 10days decreased in 60% the tumor volume compared to control. Additionally, no changes were observed when biochemical profile, complete blood cells count (CBC), organs, and body weight were analyzed. Mg-Pe was shown to be a promising anti-melanoma molecule capable of switching melanoma cells to a non-invasive phenotype with no toxicity to melanoma-bearing mice.


Subject(s)
Fungal Polysaccharides/pharmacology , Galactans/pharmacology , Melanoma/drug therapy , Pleurotus/chemistry , Animals , Fruiting Bodies, Fungal/chemistry , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL
2.
Chem Biol Interact ; 217: 19-27, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24713361

ABSTRACT

BACKGROUND AND AIM: Excessive ethanol consumption can lead to development of hepatic steatosis. Since the FXR receptor regulates adipose cell function and liver lipid metabolism, the aim of this work was to examine the effects of the FXR agonist 6ECDCA on alcoholic liver steatosis development and on oxidative stress induced by ethanol consumption. METHODS: Swiss mice (n=24) received a low-protein diet (6%) and a liquid diet containing 10% ethanol or water for 6weeks. In the last 15days mice received oral treatment with 6ECDCA (3mgkg(-1)) or 1% tween (vehicle). The experimental groups (n=6) were: water+tween, water+6ECDCA, ethanol+tween and ethanol+6ECDCA. Moreover, as a diet control, we used a basal group (n=6), fed by a normal-proteic diet (23%) and water. After the treatment period, the animals were anesthetized for sample collection to perform plasma biochemistry assays, hepatic oxidative stress assays, hepatic cholesterol and triglycerides measurements, liver histology and hepatic gene expression. RESULTS: Ethanol associated with low-protein diet induced hepatic oxidative stress, increased plasma transaminases and induced hepatic lipid accumulation. Many of these parameters were reversed by the administration of 6ECDCA, including amelioration of lipid accumulation and lipoperoxidation, and reduction of reactive oxygen species. These effects were possibly mediated by regulation of Srebpf1 and FAS gene expression, both reduced by the FXR agonist. CONCLUSIONS: Our data demonstrated that 6ECDCA reverses the accumulation of lipids in the liver and decreases the oxidative stress induced by ethanol and low-protein diet. This FXR agonist is promising as a potential therapy for alcoholic liver steatosis.


Subject(s)
Chenodeoxycholic Acid/pharmacology , Fatty Liver/drug therapy , Gastrointestinal Agents/pharmacology , Liver Diseases, Alcoholic/drug therapy , Oxidative Stress/physiology , Receptors, Cytoplasmic and Nuclear/agonists , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Catalase/metabolism , Cholesterol/blood , Ethanol/administration & dosage , Fatty Liver/blood , Fatty Liver/chemically induced , Fatty Liver/etiology , Glutathione Transferase/metabolism , Histocytochemistry , Liver Diseases, Alcoholic/blood , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Male , Mice , Receptors, Cytoplasmic and Nuclear/metabolism , Superoxide Dismutase/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...