Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Hypertens Res ; 47(4): 1024-1032, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238510

ABSTRACT

C-phycocyanin (CPC) is a photosynthetic protein found in Arthrospira maxima with a nephroprotective and antihypertensive activity that can prevent the development of hemodynamic alterations caused by chronic kidney disease (CKD). However, the complete nutraceutical activities are still unknown. This study aims to determine if the antihypertensive effect of CPC is associated with preventing the impairment of hemodynamic variables through delaying vascular dysfunction. Twenty-four normotensive male Wistar rats were divided into four groups: (1) sham + 4 mL/kg/d vehicle (100 mM of phosphate buffer, PBS) administered by oral gavage (og), (2) sham + 100 mg/kg/d og of CPC, (3) CKD induced by 5/6 nephrectomy (CKD) + vehicle, (4) CKD + CPC. One week after surgery, the CPC treatment began and was administrated daily for four weeks. At the end treatment, animals were euthanized, and their thoracic aorta was used to determine the vascular function and expression of AT1, AT2, and Mas receptors. CKD-induced systemic arterial hypertension (SAH) and vascular dysfunction by reducing the vasorelaxant response of angiotensin 1-7 and increasing the contractile response to angiotensin II. Also, CKD increased the expression of the AT1 and AT2 receptors and reduced the Mas receptor expression. Remarkably, the treatment with CPC prevented SAH, renal function impairment, and vascular dysfunction in the angiotensin system. In conclusion, the antihypertensive activity of CPC is associated with avoiding changes in the expression of AT1, AT2, and Mas receptors, preventing vascular dysfunction development and SAH in rats with CKD.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Rats , Male , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Angiotensin II/pharmacology , Angiotensin II/metabolism , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Rats, Wistar , Hypertension/complications , Hypertension/drug therapy , Hypertension/metabolism , Renal Insufficiency, Chronic/drug therapy , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin , Receptor, Angiotensin, Type 2/metabolism
2.
J Cardiovasc Pharmacol ; 83(4): 317-329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38207007

ABSTRACT

ABSTRACT: Chronic stress induces a group of unrecognized cardiovascular impairments, including elevated hemodynamic variables and vascular dysfunction. Moreover, hydrogen sulfide (H 2 S), a gasotransmitter that regulates the cardiovascular system decreases under chronic stress. Thus, this study assessed the impact of sodium hydrosulfide (NaHS) (H 2 S donor) on chronic restraint stress (CRS)-induced cardiovascular changes. For that purpose, male Wistar rats were restrained for 2 hours a day in a transparent acrylic tube over 8 weeks. Then, body weight, relative adrenal gland weight, serum corticosterone, H 2 S-synthesizing enzymes, endothelial nitric oxide synthetize expression, reactive oxygen species levels, lipid peroxidation, and reduced glutathione-to-oxidized glutathione (GSH 2 :GSSG) ratio were determined in the thoracic aorta. The hemodynamic variables were measured in vivo by the plethysmograph method. The vascular function was evaluated in vitro as vasorelaxant responses induced by carbachol or sodium nitroprusside, and norepinephrine (NE)-mediated vasocontractile responses in the thoracic aorta. CRS increased (1) relative adrenal gland weight; (2) hemodynamic variables; (3) vasoconstrictor responses induced by NE, (4) reactive oxygen species levels, and (5) lipid peroxidation in the thoracic aorta. In addition, CRS decreased (1) body weight; (2) vasorelaxant responses induced by carbachol; (3) GSH content, and (4) GSH 2 :GSSG ratio. Notably, NaHS administration (5.6 mg/kg) restored hemodynamic variables and lipid peroxidation and attenuated the vasoconstrictor responses induced by NE in the thoracic aorta. In addition, NaHS treatment increased relative adrenal gland weight and the GSH 2 :GSSG ratio. Taken together, our results demonstrate that NaHS alleviates CRS-induced hypertension by reducing oxidative stress and restoring vascular function in the thoracic aorta.


Subject(s)
Hydrogen Sulfide , Sulfides , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Carbachol/pharmacology , Rats, Wistar , Hydrogen Sulfide/metabolism , Oxidative Stress , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology , Body Weight
3.
Eur J Pharmacol ; 963: 176266, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38096969

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter implied in metabolic diseases, insulin resistance, obesity, and type 2 Diabetes Mellitus. This study aimed to determine the effect of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor), L-Cysteine (L-Cys; substrate of H2S producing enzymes) and DL-Propargylglycine (DL-PAG; cystathionine-gamma-lyase inhibitor) on the vascular dysfunction induced by insulin resistance in rat thoracic aorta. For this purpose, 72 animals were divided into two main sets that received: 1) tap water (control group; n = 12); and 2) fructose 15% w/v in drinking water [insulin resistance group (IR); n = 60] for 20 weeks. After 16 weeks, the group 2 was divided into five subgroups (n = 12 each), which received daily i. p. injections during 4 weeks of: 1) non-treatment (control); 2) vehicle (phosphate buffer saline; PBS, 1 ml/kg); 3) NaHS (5.6 mg/kg); 4) L-Cys (300 mg/kg); and (5) DL-PAG (10 mg/kg). Hemodynamic variables, metabolic variables, vascular function, ROS levels and the expression of p-eNOS and eNOS were determined. IR induced: 1) hyperinsulinemia; 2) increased HOMA-index; 3) decreased Matsuda index; 4) hypertension, vascular dysfunction, increased ROS levels; 5) increased iNOS, and 6) decreased CSE, p-eNOS and eNOS expression. Furthermore, IR did not affect contractile responses to norepinephrine. Interestingly, NaHS and L-Cys treatment, reversed IR-induced impairments and DL-PAG treatment decreased and increased the HOMA and Matsuda index, respectively. Taken together, these results suggest that NaHS and L-Cys decrease the metabolic and vascular alterations induced by insulin resistance by reducing oxidative stress and activating eNOS. Thus, hydrogen sulfide may have a therapeutic application.


Subject(s)
Diabetes Mellitus, Type 2 , Hydrogen Sulfide , Hypertension , Insulin Resistance , Animals , Rats , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Cysteine/pharmacology , Cysteine/therapeutic use , Cysteine/metabolism , Diabetes Mellitus, Type 2/complications , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Insulin Resistance/physiology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species
4.
Front Genet ; 14: 1234032, 2023.
Article in English | MEDLINE | ID: mdl-37779911

ABSTRACT

Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4) gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone-rod dystrophy (CRD), and pan-retinal CRD. Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most cases, it is necessary to perform a functional assay to determine the effect of these variants. Methods: Whole genome sequencing (WGS) was performed in one Spanish proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G on splicing was investigated both in silico and in vitro. The in silico approach was based on the deep-learning tool SpliceAI. For the in vitro approach we used a midigene splice assay in HEK293T cells, based on a previously established wild-type midigene (BA29) containing ABCA4 exons 46 to 48. Results: Through the analysis of WGS data, we identified two candidate variants in ABCA4 in one proband: a previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that the variants were in trans. For the branchpoint variant, SpliceAI predicted an acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron 47 creating a premature stop codon and allowed to categorize the variant as moderately severe. Subsequent analysis revealed the presence of this variant as a second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in a large cohort of IRD cases. Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the midigene splice assay, along with the identification of this variant in a second unrelated individual affected with STGD, provides sufficient evidence to classify the variant as likely pathogenic. In addition, this research highlights the importance of studying non-coding regions and performing functional assays to provide a conclusive molecular diagnosis.

5.
Front Sociol ; 8: 1137797, 2023.
Article in English | MEDLINE | ID: mdl-37693800

ABSTRACT

This paper responds to two questions-What dimensions and indicators are relevant to the construction of social wellbeing? How are the levels of wellbeing distributed in the municipalities of Mexico City? To answer these questions, we use data from the Wellbeing Survey (N = 2,871) that is representative of Mexico City and its municipalities. We employed two methods, DM-R distances, and Mamdani's Fuzzy Inference Method. The results show that all the proposed dimensions and indicators contributed to the building of multidimensional social wellbeing; in the case of some indicators (social security, built environment, and public insecurity) they contributed less. This suggests government interventions should be designed in order to improve the gaps in those areas. The evidence also indicates that community wellbeing is a relevant dimension when measuring social wellbeing in large cities, in addition to identifying areas of intervention for the development of more efficient and inclusive public policies.

6.
Biomedicines ; 11(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37371611

ABSTRACT

Probenecid is an old uricosuric agent used in clinics to treat gout and reduce the renal excretion of antibiotics. In recent years, probenecid has gained attention due to its ability to interact with membrane proteins such as TRPV2 channels, organic anion transporters, and pannexin 1 hemichannels, which suggests new potential therapeutic utilities in medicine. Some current functions of probenecid include their use as an adjuvant to increase the bioavailability of several drugs in the Central Nervous System (CNS). Numerous studies also suggest that this drug has important neuroprotective, antiepileptic, and anti-inflammatory properties, as evidenced by their effect against neurological and neurodegenerative diseases. In these studies, the use of probenecid as a Panx1 hemichannel blocker to reduce neuroinflammation is highlighted since neuroinflammation is a major trigger for diverse CNS alterations. Although the clinical use of probenecid has declined over the years, advances in its use in preclinical research indicate that it may be useful to improve conventional therapies in the psychiatric field where the drugs used have a low bioavailability, either because of a deficient passage through the blood-brain barrier or a high efflux from the CNS or also a high urinary clearance. This review summarizes the history, pharmacological properties, and recent research uses of probenecid and discusses its future projections as a potential pharmacological strategy to intervene in neurodegeneration as an outcome of neuroinflammation.

7.
Peptides ; 164: 171001, 2023 06.
Article in English | MEDLINE | ID: mdl-36990388

ABSTRACT

Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-×¥-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.


Subject(s)
Hyperglycemia , Renin-Angiotensin System , Rats , Male , Animals , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Blood Glucose , Streptozocin/pharmacology , Rats, Wistar , Peptidyl-Dipeptidase A/metabolism , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Angiotensin I/pharmacology
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768437

ABSTRACT

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Subject(s)
Colorectal Neoplasms , Students , Humans , Mexico , Interdisciplinary Studies , Therapies, Investigational , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy
9.
Exp Mol Med ; 55(1): 132-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36609600

ABSTRACT

Hepatocellular carcinoma (HCC) pathogenesis is associated with alterations in splicing machinery components (spliceosome and splicing factors) and aberrant expression of oncogenic splice variants. We aimed to analyze the expression and potential role of the spliceosome component PRPF8 (pre-mRNA processing factor 8) in HCC. PRPF8 expression (mRNA/protein) was analyzed in a retrospective cohort of HCC patients (n = 172 HCC and nontumor tissues) and validated in two in silico cohorts (TCGA and CPTAC). PRPF8 expression was silenced in liver cancer cell lines and in xenograft tumors to understand the functional and mechanistic consequences. In silico RNAseq and CLIPseq data were also analyzed. Our results indicate that PRPF8 is overexpressed in HCC and associated with increased tumor aggressiveness (patient survival, etc.), expression of HCC-related splice variants, and modulation of critical genes implicated in cancer-related pathways. PRPF8 silencing ameliorated aggressiveness in vitro and decreased tumor growth in vivo. Analysis of in silico CLIPseq data in HepG2 cells demonstrated that PRPF8 binds preferentially to exons of protein-coding genes, and RNAseq analysis showed that PRPF8 silencing alters splicing events in multiple genes. Integrated and in vitro analyses revealed that PRPF8 silencing modulates fibronectin (FN1) splicing, promoting the exclusion of exon 40.2, which is paramount for binding to integrins. Consistent with this finding, PRPF8 silencing reduced FAK/AKT phosphorylation and blunted stress fiber formation. Indeed, HepG2 and Hep3B cells exhibited a lower invasive capacity in membranes treated with conditioned medium from PRPF8-silenced cells compared to medium from scramble-treated cells. This study demonstrates that PRPF8 is overexpressed and associated with aggressiveness in HCC and plays important roles in hepatocarcinogenesis by altering FN1 splicing, FAK/AKT activation and stress fiber formation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Retrospective Studies , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
Eur J Pharmacol ; 940: 175455, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36549499

ABSTRACT

Hydrogen sulfide (H2S) is a unique signaling molecule that, along with carbon monoxide and nitric oxide, belongs to the gasotransmitters family. H2S is endogenously synthesized by enzymatic and non-enzymatic pathways. Three enzymatic pathways involving cystathionine-γ-lyase, cystathionine-ß-synthetase, and 3-mercaptopyruvate sulfurtransferase are known as endogenous sources of H2S. This gaseous molecule has recently emerged as a regulator of many systems and physiological functions, including the cardiovascular system where it controls the vascular tone of small arteries. In this context, H2S leads to vasorelaxation by regulating the activity of vascular smooth muscle cells, endothelial cells, and perivascular nerves. Specifically, H2S modulates the functionality of different ion channels to inhibit the autonomic sympathetic outflow-by either central or peripheral mechanisms-or to stimulate perivascular sensory nerves. These mechanisms are particularly relevant for those pathological conditions associated with impaired neuromodulation of vascular tone. In this regard, exogenous H2S administration efficiently attenuates the increased activity of the sympathetic nervous system often seen in patients with certain pathologies. These effects of H2S on the autonomic sympathetic outflow will be the primary focus of this review. Thereafter, we will discuss the central and peripheral regulatory effects of H2S on vascular tone. Finally, we will provide the audience with a detailed summary of the current pathological implications of H2S modulation on the neural regulation of vascular tone.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Humans , Hydrogen Sulfide/metabolism , Endothelial Cells/metabolism , Gasotransmitters/metabolism , Neurotransmitter Agents/pharmacology , Signal Transduction
11.
Life Sci ; 312: 121218, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36427545

ABSTRACT

AIM: To assess the effects of subchronic administration with NaHS, an exogenous H2S donor, on TBI-induced hypertension and vascular impairments. MAIN METHODS: Animals underweministration does not prevent the body weight loss but slightly imnt a lateral fluid percussion injury, and the hemodynamic variables were measured in vivo by plethysmograph method. The vascular function in vitro, the ROS levels by the DCFH-DA method and the expression of H2S-synthesizing enzymes and eNOS by Western blot were measured in isolated thoracic aortas at day 7 post-TBI. The effect of L-NAME on NaHS-induced effects in vascular function was evaluated. Brain water content was determined 7 days after trauma induction. Body weight was recorded throughout the experimental protocol, whereas the sensorimotor function was evaluated using the neuroscore test at days -1 (basal), 2, and 7 after the TBI induction. KEY FINDINGS: TBI animals showed: 1) an increase in hemodynamic variables and ROS levels in aortas; 2) vascular dysfunction; 3) sensorimotor dysfunction; and 4) a decrease in body weight, the expression of H2S-synthesizing enzymes, and eNOS phosphorylation. Interestingly, NaHS subchronic administration (3.1 mg/kg; i.p.; every 24 h for six days) prevented the development of hypertension, vascular dysfunction, and oxidative stress. L-NAME abolished NaHS-induced effects. Furthermore, NaHS treatment restored H2S-synthesizing enzymes and eNOS phosphorylation with no effect on body weight, sensorimotor impairments, or brain water content. SIGNIFICANCE: Taken together, these results demonstrate that H2S prevents TBI-induced hypertension by restoring vascular function and modulating ROS levels, H2S-synthesizing enzymes expression, and eNOS phosphorylation.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Hypertension , Animals , Rats , Hydrogen Sulfide/pharmacology , Reactive Oxygen Species/metabolism , NG-Nitroarginine Methyl Ester/adverse effects , Hypertension/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Body Weight , Water
12.
Nitric Oxide ; 129: 82-101, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36280191

ABSTRACT

The systemic cardiovascular effects of major trauma, especially neurotrauma, contribute to death and permanent disability in trauma patients and treatments are needed to improve outcomes. In some trauma patients, dysfunction of the autonomic nervous system produces a state of adrenergic overstimulation, causing either a sustained elevation in catecholamines (sympathetic storm) or oscillating bursts of paroxysmal sympathetic hyperactivity. Trauma can also activate innate immune responses that release cytokines and damage-associated molecular patterns into the circulation. This combination of altered autonomic nervous system function and widespread systemic inflammation produces secondary cardiovascular injury, including hypertension, damage to cardiac tissue, vascular endothelial dysfunction, coagulopathy and multiorgan failure. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) are small gaseous molecules with potent effects on vascular tone regulation. Exogenous NO (inhaled) has potential therapeutic benefit in cardio-cerebrovascular diseases, but limited data suggests potential efficacy in traumatic brain injury (TBI). H2S is a modulator of NO signaling and autonomic nervous system function that has also been used as a drug for cardio-cerebrovascular diseases. The inhaled gases NO and H2S are potential treatments to restore cardio-cerebrovascular function in the post-trauma period.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Gasotransmitters , Hydrogen Sulfide , Humans , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/pharmacology , Nitric Oxide , Gasotransmitters/therapeutic use
13.
Steroids ; 188: 109132, 2022 12.
Article in English | MEDLINE | ID: mdl-36273542

ABSTRACT

Several studies have demonstrated that the underlying mechanism of insulin resistance (IR) is linked with developing diseases like diabetes mellitus, hypertension, metabolic syndrome, and polycystic ovary syndrome. In turn, the dysfunction of female gonadal hormones (especially 17ß-estradiol) may be related to the development of IR complications since different studies have shown that 17ß-estradiol has a cardioprotector and vasorelaxant effect. This study aimed was to determine the effect of the 17ß-estradiol administration in insulin-resistant rats and its effects on cardiovascular responses in pithed rats. Thus, the vasopressor responses are induced by sympathetic stimulation or i.v. bolus injections of noradrenaline (α1/2), methoxamine (α1), and UK 14,304 (α2) adrenergic agonist were determined in female pithed rats with fructose-induced insulin resistance or control rats treated with: 1) 17ß-estradiol or 2) its vehicle (oil) for 5 weeks. Thus, 17ß-estradiol decreased heart rate, prevented the increase of blood pressure induced by ovariectomy, but with the opposite effect on sham-operated rats; and decreased vasopressor responses induced by i.v. bolus injections of noradrenaline on sham-operated (control and fructose group) and ovariectomized (control) rats, and those induced by i.v. bolus injections of methoxamine (α1 adrenergic agonist). Overall, these results suggest 17ß-estradiol has a cardioprotective effect, and its effect on vasopressor responses could be mediated mainly by the α1 adrenergic receptor. In contrast, IR with ovariectomy 17ß-estradiol decreases or loses its cardioprotector effect, this could suggest a possible link between the adrenergic receptors and the insulin pathway.


Subject(s)
Estradiol , Insulin Resistance , Sympathetic Nervous System , Animals , Female , Humans , Rats , Adrenergic Agonists/pharmacology , Estradiol/pharmacology , Fructose/pharmacology , Insulin , Insulin Resistance/physiology , Methoxamine/pharmacology , Norepinephrine/pharmacology , Ovariectomy , Rats, Wistar , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Vasoconstrictor Agents/pharmacology
14.
J Clin Med ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012955

ABSTRACT

Inherited retinal dystrophies (IRDs) affect an estimated 1 in every 2000 people, this corresponding to nearly 2 million cases worldwide. Currently, 270 genes have been associated with IRDs, most of them altering the function of photoreceptors and retinal pigment epithelium. Gene therapy has been proposed as a potential tool for improving visual function in these patients. Clinical trials in animal models and humans have been successful in various types of IRDs. Recently, voretigene neparvovec (Luxturna®) has been approved by the US Food and Drug Administration for the treatment of biallelic mutations in the RPE65 gene. The current state of the art in gene therapy involves the delivery of various types of viral vectors into the subretinal space to effectively transduce diseased photoreceptors and retinal pigment epithelium. For this, subretinal injection is becoming increasingly popular among researchers and clinicians. To date, several approaches for subretinal injection have been described in the scientific literature, all of them effective in accessing the subretinal space. The growth and development of gene therapy give rise to the need for a standardized procedure for subretinal injection that ensures the efficacy and safety of this new approach to drug delivery. The goal of this review is to offer an insight into the current subretinal injection techniques and understand the key factors in the success of this procedure.

15.
Peptides ; 157: 170861, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35973467

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter that modulates the peripheral transmission regulating the vascular tone. In vitro studies have suggested that H2S induces vasodilation by stimulating capsaicin-sensitive sensory neurons. This study was designed to determine the effects of H2S on the non-adrenergic/non-cholinergic (NANC) outflow in the pithed rat, and the underlying mechanisms. For that purpose, 72 male Wistar rats were anesthetized, pithed and the carotid, femoral and jugular veins were cannulated and then divided into two main sets. The first set of animals (n = 48) was used to determine the effect of NaHS (H2S donor) on the vasodepressor responses induced by: 1) NANC outflow electrical stimulation (n = 24); and 2) i.v. bolus of α-CGRP (n = 24) and subdivided into 4 groups (n = 6 each): 1) control group (without infusion); continuous infusion of: 2) PBS (vehicle; 0.02 ml/kg·min); 3) NaHS 10 µg/kg·min; and 4) NaHS 18 µg/kg·min. The second set of animals (n = 24) received an i.v. bolus of either (1) HC 030031 (TRPA1 channel antagonist; 18 µg/kg; n = 12) or (2) capsazepine (TRPV1 channel antagonist; 100 µg/kg; n = 12) in presence and absence of 18 µg/kg·min NaHS i.v. continuous infusion to determine the underlying mechanism of the NaHS effect on the NANC outflow. Our results show that NaHS infusion increased the vasodepressor responses induced by electrical stimulation, but not by α-CGRP, effect that was abolished by HC030031 and remained unaffected after capsazepine. These data suggest that activation of TRPA1 channels, but no TRPV1, is responsible for the NaHS-induced NANC neurotransmission stimulation.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Acetanilides , Animals , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Hydrogen Sulfide/pharmacology , Male , Purines , Rats , Rats, Wistar , Sulfides , TRPA1 Cation Channel , TRPV Cation Channels
16.
Eur J Pharmacol ; 931: 175160, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35948161

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter that modulates neurotransmission. Indeed, it has been recently demonstrated that H2S inhibits the sympathetic outflow in male rats, although the mechanisms remain elusive. Thus, this study evaluated the role of potassium channels on NaHS-induced sympathoinhibition. For this purpose, male and female Wistar rats were anesthetized, pithed, and cannulated. After that, animals received selective electrical stimulation of the vasopressor sympathetic outflow (T7-T9). Prior to 310 µg/kg·min NaHS i.v. continuous infusion animals received: (1) bidistilled water (tetraethylammonium, TEA; 4-aminopyridine, 4-AP; and barium chloride, BaCl2; vehicle; 1 ml/kg); (2) TEA (non-selective K+ channels blocker; 16.5 mg/kg); (3) 4-AP (non-selective voltage-dependent K+ channels blocker; 5 mg/kg); (4) BaCl2 (inward rectifier K+ channels blocker; 65 µg/kg); (5) DMF 5%, glucose 10% and NaOH 0.1 N (glibenclamide vehicle; 1 ml/kg); (6) glibenclamide (ATP-dependent K+ channels blocker; 10 mg/kg); (7) DMSO 4% (paxilline vehicle; 1 ml/kg); and (8) paxilline (large-conductance voltage- and Ca2+-activated K+ channel blocker; 90 µg/kg). The NaHS-induced sympathoinhibition was: (1) equally observed in male and female rats; (2) unaffected by vehicles; (3) reversed by the potassium channel blockers. Taken together, our results suggest that NaHS-induced sympathoinhibition does not depend on sex and it is mediated by the activation of several potassium channels.


Subject(s)
Hydrogen Sulfide , 4-Aminopyridine/pharmacology , Animals , Female , Glyburide/pharmacology , Hydrogen Sulfide/pharmacology , Male , Potassium Channel Blockers/pharmacology , Potassium Channels , Rats , Rats, Wistar , Vasoconstrictor Agents/pharmacology
17.
Metab Brain Dis ; 37(6): 1863-1874, 2022 08.
Article in English | MEDLINE | ID: mdl-35759072

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Animals , Brain Injuries, Traumatic/drug therapy , Brain Stem , Cystathionine , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/pharmacology , Hypothalamus/metabolism
18.
Nat Commun ; 13(1): 3665, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760817

ABSTRACT

Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell-cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell-cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell-cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.


Subject(s)
Autism Spectrum Disorder , COVID-19 , Cell Communication , Humans , Ligands , Phenotype
19.
J Neurotrauma ; 39(1-2): 181-195, 2022 01.
Article in English | MEDLINE | ID: mdl-33626966

ABSTRACT

Traumatic brain injury (TBI) represents a critical public health problem around the world. To date, there are no accurate therapeutic approaches for the management of cardiovascular impairments induce by TBI. In this regard, hydrogen sulfide (H2S), a novel gasotransmitter, has been proposed as a neuro- and cardioprotective molecule. This study was designed to determine the effect of subchronic management with sodium hydrosulfide (NaHS) on hemodynamic, vasopressor sympathetic outflow and sensorimotor alterations produced by TBI. Animals underwent a lateral fluid percussion injury, and changes in hemodynamic variables were measured by pletismographic methods. In addition, vasopressor sympathetic outflow was assessed by a pithed rat model. Last, sensorimotor impairments were evaluated by neuroscore test and beam-walking test. At seven, 14, 21, and 28 days after moderate-severe TBI, the animals showed: (1) a decrease on sensorimotor function in the neuroscore test and beam-walking test; (2) an increase in heart rate, systolic, diastolic, and mean blood pressure; (3) progressive sympathetic hyperactivity; and (4) a decrease in vasopressor responses induced by noradrenaline (α1/2-adrenoceptors agonist) and UK 14,304 (selective α2-adrenoceptor agonist). Interestingly, intraperitoneal daily injections of NaHS, an H2S donor (3.1 and 5.6 mg/kg), during seven days after TBI prevented the development of the impairments in hemodynamic variables, which were similar to those obtained in sham animals. Moreover, NaHS treatment prevented the sympathetic hyperactivity and decreased noradrenaline-induced vasopressor responses. No effects on sensorimotor dysfunction were observed, however. Taken together, our results suggest that H2S ameliorates the hemodynamic and sympathetic system impairments observed after TBI.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Hypertension , Animals , Brain Injuries, Traumatic/complications , Hydrogen Sulfide/pharmacology , Rats , Rats, Wistar , Vasoconstrictor Agents/pharmacology
20.
Plant Foods Hum Nutr ; 76(3): 319-325, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34264453

ABSTRACT

Rosemary (Rosmarinus officinalis) is a culinary and medicinal plant used in food and pharmaceutical industry. The wide range of biological activities is mainly related to phenolic and terpenic compounds; like carnosic acid (CA), carnosol (CS) and rosmarinic acid (RA), mainly reported in rosemary leaf extracts, and recently described in rosemary callus extracts. The aim of this work was to investigate the chemical profile of rosemary cell lines and evaluate their antiproliferative potential against human HT-29 colorectal cancer cell lines. For this purpose, rosemary leaf explants were dedifferentiated on MS medium and added with 2, 4-D (2, 4-dichlorophenoxyacetic acid; 2 mg/L) and BAP (6-benzylaminopurine; 2 mg/L). Cell aggregates were separated according to colour and three rosemary cell lines cultures were established: green (RoG), yellow (RoY) and white (RoW). The chemical profile of rosemary cell lines extracts was characterized by combining HPLC and GC platforms coupled to HR-MS/MS. The antiproliferative activity against HT-29 cell line was analyzed with MTT assay. A total of 71 compounds, including hydroxycinnamic acid and hydroxybenzoic acid derivatives, flavonoids, phenolic di- and triterpenes, as well as relevant unsaturated fatty acids and their esters, phytosterols, and carotenoids were tentatively identified in the extract of the target cell lines. The antiproliferative activity test against HT-29 cell using the MTT assay revealed that the viability of HT-29 colon cancer cells was affected after treatment with the RoW extract (IC50 of 49.63 µg/mL) at 48 h. These results showed that rosemary cell lines can also accumulate other bioactive phytochemicals with demonstrated antiproliferative potential.


Subject(s)
Colonic Neoplasms , Rosmarinus , Chromatography, High Pressure Liquid , Colonic Neoplasms/drug therapy , HT29 Cells , Humans , Plant Extracts/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...